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motivation

How to enable quick processing 
for large volumes of data?



Scaling for faster insight
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Alt: Predict final result from partial processing

Input: Data System: Online Aggregation
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Currently, limited to simple queries

Can we continuously update each data frame?

cannot apply these subsequent OPs



key concept

How to represent online 
aggregation results?



Types closed under operations

Integers are closed under addition

• (1 + 3) + 3 = 4 + 3

Relations (or tables) are closed under relational operations

• lineitem = pandas.read_csv(‘lineitem.csv’)

• order_qty = lineitem.sum(qty, by=orderkey)

• lg_orders = order_qty.filter(sum_qty > 300)

We need an OLA type closed under relational operations



How to represent an evolving object?

How are these individual states transformed?
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Case 1: order-preserving local operation

Input: lineitem (sorted on orderkey)     OP: sum qty by orderkey

Properties:

1. More rows may appear

incremental processing



Case 2: shuffling with inference

Input: lg_order_cust (sorted on orderkey)     OP: sum s_qty by 
name

Properties:

1. More rows may appear

2. Attribute values may change

3. Values may need scaling 
(= prediction)

merge into existing results



Case 3: shuffling without inference

Input: qty_per_cust OP: sort by sum_qty

Properties:

1. More rows may appear

2. Attribute values may change

3. Values may need scaling 
(= prediction)

complete refresh



Summary: Only a few transformation patterns

Types of Transformation:

• Case 1: order-preserving OP

• Case 2: shuffle with inference

• Case 3: complete refresh

In transformed output:

1. More rows may appear

2. Attribute values may change

3. Values may need scaling

New concepts introduced:

cardinality growth (query progress vs cardinality)
mutable attributes (values can change or not)



internal processing

How to represent states and 
efficiently generate new states?



Case 1: order-preserving local operation

delta_1

delta_2

delta_3

state_k = delta_1 ∪ delta_2 ∪ … ∪ delta_k



Case 2: shuffling with inference (1/2)

Each merge creates a new 
version of state

state_k = version_k (after scaling)



Case 2: shuffling with inference (2/2)

Each merge creates a new 
version of state

The values are scaling with (est total input size / current size)

These values need scaling
w.r.t. current input size



Case 3: shuffling without inference

Input: qty_per_cust OP: sort by sum_qty

state_k = version_k (without scaling)



putting it together

How can a user use it end-to-
end?



Evolving Data Frame and Operations

Our Earlier Example

OLA operation on an edf generates edf

Operations generating edf



Cardinality and Aggregate Inference Logic

• Given the states of an edf, generate a user-consumable query 
output.
• Growth: group sizes may grow in a non-linear way as more input data 

are processed (Cardinality estimators)
• Coverage: the number of groups covered may also increase over time 

(Cardinality estimators)
• Operation: different types of aggregations requires different 

estimations (Aggregate estimators)

obtain estimation of final result



Confidence Interval for Deep OLA

• Compute “uncertainty” for all mutable attributes.
• Different techniques for different aggregation operations e.g. variance 

of OLS parameter, central limit theorem, etc.

• Propagate uncertainty through OLA operations.
• Linearize using a first-order taylor expansion and compute covariance 

matrix.

• Compute confidence intervals from final uncertainty.
• Use Chebyshev’s inequality for final CI estimate.

confidence interval on estimation



Putting together (first four EDFs)

lineitem

delta 1

delta 2

delta 3

…

order_qty
= lineitem.sum(qty, by=…)

delta 1

case 1

delta 2

lg_orders
=order_qty.filter(…)

delta 1

case 1

lg_lg_order_cust
= lg_orders.join.join

delta 1

case 1

delta 3

delta 2

delta 3

delta 2

delta 3



Complete data flow

case 2 case 3



evaluation

How much is the computation 
overhead and approximation 
error?



Our OLA system delivers answers quickly

select o_year, 
sum(...) / sum(...) as mkt_share

from (
select

year(o_orderdate) as o_year,
l_extendedprice * (1 - l_discount) as volume,
n2.n_name as nation

from
part, supplier, lineitem, orders, customer, 
nation n1, nation n2, region

where ...
) as all_nations

group by o_year
order by o_year; Q8

1

10

100

1000

Po
stg
res

Pr
es
to

Ve
rti
ca

Po
lar
s

Ac
tia
n

W
ak
e-f
ina
l

W
ak
e-f
irs
t

Q
ue

ry
 L

at
en

cy
 (s

ec
)



Our errors decrease quickly

• Our result has a complete row set

• The errors decrease quickly

• Attr value errors are zero

• Result set increase

Q8 Q18• All rows are present
• Attr values improve

• Attr values are exact
• More rows appear



Faster & more accurate than existing OLA

• The lower, the better (we are lower)

• Reason 1: we are highly parallel Reason 2: our final answers are exact



Conclusion: A Step Toward Deep OLA

• First OLA for processing arbitrarily nested queries

• Motivation: A new type for OLA

• Proposed Evolving Data Frame (EDF)

• EDF, consisting of multiple states, is closed under OPs

• Evaluation: low latency, high accuracy, and improvement over STOA



Thank you!


