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How to enable quick processing
for large volumes of data?
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1 For exploratory data analysis, it is often desirable to know what answers you are likely to get before actually !
! obtaining those answers. This can potentially be achieved by designing systems to offer the estimates of a 1
1 data operation result—say op(data)—earlier in the process based on partial data processing. Those estimates |
| continuously refine as more data is processed and finally converge to the exact answer. Unfortunately, the '
| existing techniques—called Online Aggregation (OLA)—are limited to a single operation; that is, we cannot '
! obtain the estimates for op(op(data)) or op(...(op(data))). If this Deep OLA becomes possible, data analysts will !
1 be able to explore data more interactively using complex cascade operations. 1
| In this work, we take a step toward Deep OLA with evolving data frames (edf), a novel data model to X
| offer OLA for nested ops—op(...(op(data)))—by representing an evolving structured data (with converging X
| estimates) that is closed under set operations. That is, op(edf) produces yet another edf; thus, we can freely !
! apply successive operations to edf and obtain an OLA output for each op. We evaluate its viability with ]
1 WAKE, an edf-based OLA system, by examining against state-of-the-art OLA and non-OLA systems. In our A
| experiments on TPC-H dataset, WAKE produces its first estimates 4.93x faster (median)—with 1.3x median X
1 slowdown for exact answers—compared to conventional systems. Besides its generality, WAKE is also 1.92x !
| faster (median) than existing OLA systems in producing estimates of under 1% relative errors. !
| |
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CCS Concepts: » Information systems — Database query processing; Online analytical processing en-
gines; Relational parallel and distributed DBMSs; Uncertainty; Relational database model; - Mathematics
of computing — Time series analysis; « Theory of computation — Streaming models.



Scaling for faster insight

Input: Data System: Sﬁ"b“rl‘g
. 7 """"""" : B ?ééiiii""s
Output: . - I I
waiting 5 | 3 I -

More VMs for the system, the more quickly we get a result



Alt: Predict final result from partial processing

I n p ut: Data Syste m: Online Aggregation

resultin 1s result in 2s exact result in 10s

sum

o o
sum
- N

Groupl Group2 Group3 Group4 | | Groupl Group2 Group3 Group4 | | Groupl Group2 Group3 Group4

Initial results often provide enough information



Currently, limited to simple queries

1 lineitem = read_csv('...")
2 # item count for each order
3 order_gty = lineitem.sum(qty, by=orderkey)

Can we continuously update each data frame?



key concept
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How to represent online
aggregation results?
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1 For exploratory data analysis, it is often desirable to know what answers you are likely to get before actually
! obtaining those answers. This can potentially be achieved by designing systems to offer the estimates of a
1 data operation result—say op(data)—earlier in the process based on partial data processing. Those estimates
| continuously refine as more data is processed and finally converge to the exact answer. Unfortunately, the
| existing techniques—called Online Aggregation (OLA)—are limited to a single operation; that is, we cannot
| obtain the estimates for op(op(data)) or op(...(op(data))). If this Deep OLA becomes possible, data analysts will
1 be able to explore data more interactively using complex cascade operations.

| In this work, we take a step toward Deep OLA with evolving data frames (edf), a novel data model to
| offer OLA for nested ops—op(...(op(data)))—by representing an evolving structured data (with converging
| estimates) that is closed under set operations. That is, op(edf) produces yet another edf; thus, we can freely
! apply successive operations to edf and obtain an OLA output for each op. We evaluate its viability with
1 WAKE, an edf-based OLA system, by examining against state-of-the-art OLA and non-OLA systems. In our
| experiments on TPC-H dataset, WAKE produces its first estimates 4.93x faster (median)—with 1.3x median
1 slowdown for exact answers—compared to conventional systems. Besides its generality, WAKE is also 1.92x
| faster (median) than existing OLA systems in producing estimates of under 1% relative errors.
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Types closed under operations

Integers are closed under addition

(1 +3)+3=4+3

Relations (or tables) are closed under relational operations
 lineitem = pandas.read csv(‘lineitem.csv’)
 order_gty = lineitem.sum(qgty, by=orderkey)

* 1g orders = order_qgty.filter(sum qty > 300)

We need an OLA type closed under relational operations



How to represent an evolving object?

resultin 1s result in 2s exact result in 10s
30 30
e 20
a I I I
. N | B ' B
0 - § i 0 - § i -
Groupl Group2, Gmnf% Group4 | | Groupl Group2, Gmn‘% Group4 i : Groupl Group2. Gmuﬂ" Group4 |
state L state 2. \state_ 3
\ —————— J

evolving data frame

How are these individual states transformed?



Case 1: order-preserving local operation

Input: 1ineitem (sorted on orderkey) OP: sum gty by orderkey

More rows appear

<

lineitem.sum(qty, by=orderkey) (Line3; §1)

okey | gty okey | s_qgty _ —_—— e e e m e — = ——— - -
_ _ « I Properties:
1 10 1 25 o I
_% %3 2 20 o I 1. More rows may appear
3 10 g I
3 10 4 30 ~ |
4 5 2 :
4 25 2 25 § I
— 6 15 v
2 10 l
o) 15 I
6 15 | e e e e e = =

Incremental processing



Case 2: shuffling with inference

Input: 1g_order_cust (sorted on orderkey)

More rows appear

<

lg_order_cust.sum(s_qty, by=name) (Line8; §1)
o
name |s_qty name |s_qty L
Q.
CUStoT] 25 Custo1] 40 o
cust02 | 20 cust02 | 60 «
| cust03] 10 cust03 ] 40 £
. cust04 | 50 2
cust03 130 | cust05 | 35 3
cust04 | 25 -~
L cust01 1 15 5
cust02 40 =
cust04 | 25
| cust0s | 35

OP: sum s_gty by
name

Properties:

—_—

. More rows may appear
. Attribute values may change

3. Values may need scaling
(= prediction)

N

merge into existing results



Case 3: shuffling without inference

Input: gty _per cust  OP:sort by sum gty

qty_per_cust.sort(sum_qty, desc=True) (Line9; §1) Properties:

|

I
name |s_qty name |s_qty I 1. More rows may appear

I
cust01 {40 cust02 160 I 2. Attribute values may change
e fasie
| cust cust
 cust04 [50  cust03 40 :3 '@ NES &
_cust05 35 _cust05 135 | — on

complete refresh



Summary: Only a few transformation patterns

Types of Transformation: In transformed output:

« Case 1: order-preserving OP 1. More rows may appear

2. Attribute values may change

 Case 3: complete refresh 3. Values may need scaling

|
|
|
|
|
e Case 2: shuffle with inference :
|
|
|

New concepts introduced:

cardinality growth (query progress vs cardinality)
mutable attributes (values can change or not)



internal processin

How to represent states and
efficiently generate new states?
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For exploratory data analysis, it is often desirable to know what answers you are likely to get before actually
obtaining those answers. This can potentially be achieved by designing systems to offer the estimates of a
data operation result—say op(data)—earlier in the process based on partial data processing. Those estimates
continuously refine as more data is processed and finally converge to the exact answer. Unfortunately, the
existing techniques—called Online Aggregation (OLA)—are limited to a single operation; that is, we cannot
obtain the estimates for op(op(data)) or op(...(op(data))). If this Deep OLA becomes possible, data analysts will
be able to explore data more interactively using complex cascade operations.

In this work, we take a step toward Deep OLA with evolving data frames (edf), a novel data model to
offer OLA for nested ops—op(...(op(data)))—by representing an evolving structured data (with converging
estimates) that is closed under set operations. That is, op(edf) produces yet another edf; thus, we can freely
apply successive operations to edf and obtain an OLA output for each op. We evaluate its viability with
WAKE, an edf-based OLA system, by examining against state-of-the-art OLA and non-OLA systems. In our
experiments on TPC-H dataset, WAKE produces its first estimates 4.93x faster (median)—with 1.3X median
slowdown for exact answers—compared to conventional systems. Besides its generality, WAKE is also 1.92x
faster (median) than existing OLA systems in producing estimates of under 1% relative errors.
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Case 1: order-preserving local operation

lineitem.sum(qty, by=orderkey) (Line3; §1)

okey | gty okey | s_qty _
- «
3 | 10 i 25 a
s | o 15 2 % & ﬂdelta 1
S | 2 20 0
2 3 10
2 3 T 7 30 o ﬂdelta 2
ili=: %’
o o) 25
§ ~ % 1 Yg ﬂdelta 3
o) 10
M | 5 15
6 15

state k = delta 1 U delta 2 U .. U delta k



Case 2: shuffling with inference (1/2)

More rows appear

<

lg_order_cust.sum(s_qty, by=name) (Line8; §1)
name |[s_qty name |s_qty
cust01 ] 25 cust01]40
cust02 | 20 cust02 ] 60

| cust03] 10 cust03 | 40
. cust04 | 50
cust03 | 30 | cust05 | 35 N
cust04 | 25
_custO1] 15
cust02 140 =
cust04 | 25
_cust05 | 35

ore rows may appear

Each merge creates a new
version of state

state k = version k (after scaling)




Case 2: shuffling with inference (2/2)

lg_order_cust.sum(s_qty, by=name) (Line8; §1)

E [ ]
name |s_qty n S_ : These values need scaling
. = . .
S | oIS ——TT 70 P w.r.t. current input size
S cust02 | 20 cust02 | 60
< | cust03] 10 cust03 | 40 £
g _ cust04 | 50 ‘é’ h
3 C”Stgﬁ 3(5) cust05 | 35 3 Each merge creates a new
= cust = :
% TIBE % version of state
2 cust02 140 =
V¥ [cust04]25
_cust05 | 35

The values are scaling with (est total input size / current size)



Case 3: shuffling without inference

Input: gty _per cust  OP:sort by sum gty

qty_per_cust.sort(sum_qty, desc=True) (Line9; §1)

name |s_qty name |s_qty
cust01 |40 cust02 160
cust02 |60 cust04 |50

 cust03 [40 M cust01 [40

| cust04 |50 | cust03 140

| cust0S 135 | cust0S 135

state k = version k (without scaling)



putting it together
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How can a user use it end-to-
end?
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1 For exploratory data analysis, it is often desirable to know what answers you are likely to get before actually
! obtaining those answers. This can potentially be achieved by designing systems to offer the estimates of a
1 data operation result—say op(data)—earlier in the process based on partial data processing. Those estimates
' continuously refine as more data is processed and finally converge to the exact answer. Unfortunately, the
| existing techniques—called Online Aggregation (OLA)—are limited to a single operation; that is, we cannot
! obtain the estimates for op(op(data)) or op(...(op(data))). If this Deep OLA becomes possible, data analysts will
1 be able to explore data more interactively using complex cascade operations.

| In this work, we take a step toward Deep OLA with evolving data frames (edf), a novel data model to
| offer OLA for nested ops—op(...(op(data)))—by representing an evolving structured data (with converging
| estimates) that is closed under set operations. That is, op(edf) produces yet another edf; thus, we can freely
! apply successive operations to edf and obtain an OLA output for each op. We evaluate its viability with
1 WAKE, an edf-based OLA system, by examining against state-of-the-art OLA and non-OLA systems. In our
' experiments on TPC-H dataset, WAKE produces its first estimates 4.93x faster (median)—with 1.3X median
1 slowdown for exact answers—compared to conventional systems. Besides its generality, WAKE is also 1.92x
! faster (median) than existing OLA systems in producing estimates of under 1% relative errors.
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Evolving Data Frame and Operations

Operations generating edf

Our Eariicr-Example

ead_csv('...") read := data_source -> edf
N for each order edf_op := (edf, op) -> edf

lineitem.sum(qty, by=orderkey) op := agg(attrs, by) | filter(predicate)
the large orders | map(function) | join(df, options)
agg := sum | count | avg | count_distinct | min | max

| var | stddev

OLA operation on an edf generates edf



Cardinality and Aggregate Inference Logic

* Given the states of an edf, generate a user-consumable query
output.

« Growth: group sizes may grow in a non-linear way as more input data
are processed (Cardinality estimators)

« Coverage: the number of groups covered may also increase over time
(Cardinality estimators)

« Operation: different types of aggregations requires different
estimations (Aggregate estimators)

obtain estimation of final result



Confidence Interval for Deep OLA

« Compute “uncertainty” for all mutable attributes.

 Different techniques for different aggregation operations e.g. variance
of OLS parameter, central limit theorem, etc.

* Propagate uncertainty through OLA operations.

 Linearize using a first-order taylor expansion and compute covariance
matrix.

« Compute confidence intervals from final uncertainty.

« Use Chebyshev’s inequality for final Cl estimate.

confidence interval on estimation



Putting together (first four EDFs)

N N o W N =

lineitem = read_csv('...")

# item count for each order

order_qty = lineitem.sum(qty, by=orderkey)

# select only the large orders

lg_orders = order_qty.filter(sum_qty > 300)

# find the customers with biggest order sizes
lg_order_cust = lg_orders.join(orders).join(customer)

lines order_qgty lg orders

lneltem = lineitem.sum(qty, by=..) =order_qty.filter(..)
delta 1 | | deita 1 delta 1 |
delta 2 : delta 2 E : delta 2

........................ (eessssssssssssssssEsnnas (emmssssssssssssEEEEnnns
delta 3 delta 3 : delta 3

lg 1g order_cust
= 1g orders.join.join
I delta 1
: delta 2 :
rrrEEEEEEEEEEEEEEEEEnnnn
: delta 3
case 1




Complete data flow

note: right arrows indicate message queues between nodes; each node runs on a separate thread

read_csv filter (merge-) join  (hash-) join sum sort, limit

(key: orderkey) (key: name)
— OO
note: incrementally
D — read lineitem clus- note: usefithe right tablefll.e.,
tered on orderkey custome® for a build tajlle.
——— A— The key istill orderkey.
note: incrementally : —
~— read orders clus- customer
lineitem tered on orderkey ~— (key: custkey)
(key: orderkey, orders
linenum) (key: orderkey)

case 2 case 3




evaluation
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How much is the computation
overhead and approximation
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Our OLA system delivers answers quickly

I PostgreSQL || Presto | Vertica [l Polars [ Actian Vector [ WAke-final (ours) [0 Wake-first (ours)

10000s
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100s

10s T ‘|‘ I ’
'\ || il [ |
00k L D O |

100ms

Query Latency

Blmli
L

ql4 q15

select o_year,
sum(...) / sum(...) as mkt_share
from (
select
year(o_orderdate) as o_year,
1 extendedprice * (1 - 1 discount) as volume,
n2.n_name as nation
from
part, supplier, lineitem, orders, customer,
nation nl, nation n2, region
where ...

1000

Query Latency (sec)
. S S
]
N
L]
L]

i

. o ) <2 < o >
) as all_nations & & £ R N
| group by o_year 2 < X\ S Voo X6
|order by o_year; N N




Our errors decrease quickly

MAPE (%)

10 Y Atk TP SN
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e All rows are present
e Attr values improve

102 0NN 100
Q8 | g0
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Elapsed Time (s)

Recall (%)

* Our result has a complete row set

* The errors decrease quickly

e Attr values are exact
* More rows appear

—&— MAPE Recall = = = Polars
100 | ‘ | ‘ 100
< 80 Q18 | 80
= 60 L 160
€3]
& 40 {40
§ 20 20
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0
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Elapsed Time (s)
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e Attr value errors are zero

* Result set increase

A\

Recall (%)



Faster & more accurate than existing OLA

—F— ProgressiveDB —— WanderJoin —&— WAKE (ours)

2 A 2
10° 4 Modified Q1 10° ¢ Modified Q6
§§ 10° | 10° |
107% L mi H—— > 107% >
10° 10! 102 10 10! 102
Elapsed Time (s) Elapsed Time (s)

(a) vs ProgressiveDB (using single-table Q1 and Q6)

102
10°
1072
1074
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i 10-2 | W\
I — HH LN 1074 b— H : S
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Modified Q10

.

i ! i N
T T ™ T =

10° 101 102
Elapsed Time (s)

(b) vs WanderJoin (using same modified Q3, Q7, and Q10 as in [50])
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« Reason 1: we are highly parallel

A\

* The lower, the better (we are lower)

Reason 2: our final answers are exact




Conclusion: A Step Toward Deep OLA

* First OLA for processing arbitrarily nested queries

* Motivation: A new type for OLA

* Proposed Evolving Data Frame (EDF)

« EDF, consisting of multiple states, is closed under OPs

« Evaluation: low latency, high accuracy, and improvement over STOA
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