
A Step Toward Deep Online Aggregation
Nikhil Sheoran1,*, Supawit Chockchowwat2,*, Arav Chheda2, Suwen Wang2, Riya Verma2, Yongjoo Park2

1 Databricks (work done while at 2)
2 CreateLab @ University of Illinois at Urbana-Champaign,
* Equal Contribution

Extended Manuscript

motivation

How to enable quick processing
for large volumes of data?

Scaling for faster insight

0
5
10
15
20
25
30

Group1 Group2 Group3 Group4

su
m?

waiting

Output:

More VMs for the system, the more quickly we get a result

result

Input: Data System:

Alt: Predict final result from partial processing

Input: Data System: Online Aggregation

0

10

20

30

Group1 Group2 Group3 Group4

su
m

result in 1s

0

10

20

30

Group1 Group2 Group3 Group4

su
m

result in 2s

0

10

20

30

Group1 Group2 Group3 Group4

su
m

exact result in 10s

Initial results often provide enough information

Currently, limited to simple queries

Can we continuously update each data frame?

cannot apply these subsequent OPs

key concept

How to represent online
aggregation results?

Types closed under operations

Integers are closed under addition

• (1 + 3) + 3 = 4 + 3

Relations (or tables) are closed under relational operations

• lineitem = pandas.read_csv(‘lineitem.csv’)

• order_qty = lineitem.sum(qty, by=orderkey)

• lg_orders = order_qty.filter(sum_qty > 300)

We need an OLA type closed under relational operations

How to represent an evolving object?

How are these individual states transformed?

0

10

20

30

Group1 Group2 Group3 Group4

su
m

0

10

20

30

Group1 Group2 Group3 Group4

su
m

0

10

20

30

Group1 Group2 Group3 Group4

su
m

result in 1s result in 2s exact result in 10s

state 1 state 2 state 3

evolving data frame

Case 1: order-preserving local operation

Input: lineitem (sorted on orderkey) OP: sum qty by orderkey

Properties:

1. More rows may appear

incremental processing

Case 2: shuffling with inference

Input: lg_order_cust (sorted on orderkey) OP: sum s_qty by
name

Properties:

1. More rows may appear

2. Attribute values may change

3. Values may need scaling
(= prediction)

merge into existing results

Case 3: shuffling without inference

Input: qty_per_cust OP: sort by sum_qty

Properties:

1. More rows may appear

2. Attribute values may change

3. Values may need scaling
(= prediction)

complete refresh

Summary: Only a few transformation patterns

Types of Transformation:

• Case 1: order-preserving OP

• Case 2: shuffle with inference

• Case 3: complete refresh

In transformed output:

1. More rows may appear

2. Attribute values may change

3. Values may need scaling

New concepts introduced:

cardinality growth (query progress vs cardinality)
mutable attributes (values can change or not)

internal processing

How to represent states and
efficiently generate new states?

Case 1: order-preserving local operation

delta_1

delta_2

delta_3

state_k = delta_1 ∪ delta_2 ∪ … ∪ delta_k

Case 2: shuffling with inference (1/2)

Each merge creates a new
version of state

state_k = version_k (after scaling)

Case 2: shuffling with inference (2/2)

Each merge creates a new
version of state

The values are scaling with (est total input size / current size)

These values need scaling
w.r.t. current input size

Case 3: shuffling without inference

Input: qty_per_cust OP: sort by sum_qty

state_k = version_k (without scaling)

putting it together

How can a user use it end-to-
end?

Evolving Data Frame and Operations

Our Earlier Example

OLA operation on an edf generates edf

Operations generating edf

Cardinality and Aggregate Inference Logic

• Given the states of an edf, generate a user-consumable query
output.
• Growth: group sizes may grow in a non-linear way as more input data

are processed (Cardinality estimators)
• Coverage: the number of groups covered may also increase over time

(Cardinality estimators)
• Operation: different types of aggregations requires different

estimations (Aggregate estimators)

obtain estimation of final result

Confidence Interval for Deep OLA

• Compute “uncertainty” for all mutable attributes.
• Different techniques for different aggregation operations e.g. variance

of OLS parameter, central limit theorem, etc.

• Propagate uncertainty through OLA operations.
• Linearize using a first-order taylor expansion and compute covariance

matrix.

• Compute confidence intervals from final uncertainty.
• Use Chebyshev’s inequality for final CI estimate.

confidence interval on estimation

Putting together (first four EDFs)

lineitem

delta 1

delta 2

delta 3

…

order_qty
= lineitem.sum(qty, by=…)

delta 1

case 1

delta 2

lg_orders
=order_qty.filter(…)

delta 1

case 1

lg_lg_order_cust
= lg_orders.join.join

delta 1

case 1

delta 3

delta 2

delta 3

delta 2

delta 3

Complete data flow

case 2 case 3

evaluation

How much is the computation
overhead and approximation
error?

Our OLA system delivers answers quickly

select o_year,
sum(...) / sum(...) as mkt_share

from (
select

year(o_orderdate) as o_year,
l_extendedprice * (1 - l_discount) as volume,
n2.n_name as nation

from
part, supplier, lineitem, orders, customer,
nation n1, nation n2, region

where ...
) as all_nations

group by o_year
order by o_year; Q8

1

10

100

1000

Po
stg
res

Pr
es
to

Ve
rti
ca

Po
lar
s

Ac
tia
n

W
ak
e-f
ina
l

W
ak
e-f
irs
t

Q
ue

ry
 L

at
en

cy
 (s

ec
)

Our errors decrease quickly

• Our result has a complete row set

• The errors decrease quickly

• Attr value errors are zero

• Result set increase

Q8 Q18• All rows are present
• Attr values improve

• Attr values are exact
• More rows appear

Faster & more accurate than existing OLA

• The lower, the better (we are lower)

• Reason 1: we are highly parallel Reason 2: our final answers are exact

Conclusion: A Step Toward Deep OLA

• First OLA for processing arbitrarily nested queries

• Motivation: A new type for OLA

• Proposed Evolving Data Frame (EDF)

• EDF, consisting of multiple states, is closed under OPs

• Evaluation: low latency, high accuracy, and improvement over STOA

Thank you!

