
DeepOLA: Online Aggregation for Deeply NestedQueries
Nikhil Sheoran

sheoran2@illinois.edu
University of Illinois at Urbana-Champaign

ACM Reference Format:
Nikhil Sheoran. 2021. DeepOLA: Online Aggregation for Deeply Nested
Queries. In SIGMOD ’22: Student Research Competition, 2022. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
With the advent of data-driven operating model, deriving useful
insights from big data analysis has become all the more important.
But the ever-increasing volume of data has made obtaining insights
at "rates resonant with the pace of human thought" [4] more chal-
lenging. Online Aggregation (OLA) [3] is a technique that tries to
counter this challenge by incrementally improving the query result
estimates and allowing the user to observe the query progress as
well as control its execution on the fly. More specifically, OLA pro-
vides the user with an approximate estimate of the query result as
soon as it has processed a small portion (hereafter referred to as a
partition) of the data. The user based on his latency-error trade-off
requirements can choose to stop the execution of the query.

OLA was first proposed in [3] but it focused mainly on single-
table queries and group-by aggregates. [1] further improved this
by providing confidence intervals measures for the single table and
multi-table aggregate queries with JOIN and selection predicates.
Further work [2, 5] was done to optimize the query processing over
multi-table joins including Ripple Join and its related optimizations.
The work by [6] looks at online aggregation from the context of
incremental maintenance of materialized OLAP cubes specifically
from the perspective of non-distributive aggregate functions. [9]
focuses specifically on non-monotonic queries and proposes a mini-
batch execution model that partitions the intermediate output into
deterministic and uncertain sets.

The current literature lacks a well-defined general framework
that can be used to perform online-aggregation for complex and
deeply nested queries. The majority of the current research rely on
various assumptions on the type and nesting of the queries they can
support. In this work, we provide a generalized framework called
DeepOLA, that, defines a mechanism to perform online aggregate
for deeply nested queries over multiple partitions of the input tables.
The framework applies to queries with incremental updates on both
a single-table as well as any subset of multiple tables.

Our preliminary results on TPC-H dataset and queries shows that
DeepOLA can obtain estimates within reasonable error in a fraction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’22, 2022, Woodstock, NY
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

of the original query’s runtime. Not only that, for certain queries,
we observed that incremental evaluation provides the accurate
result computation faster than evaluating the query at once on the
complete data (See Figure 2).

2 FRAMEWORK
In this section, we describe the overall framework for DeepOLA.
We introduce the term Incremental Dataframe and Incremental
Operation to define the notion of data and operations in the context
of online aggregation and then describe how we parse and process
an incoming query.

2.1 Incremental Dataframe
An Incremental dataframe is a structured data (i.e. relation) to which
more data may be added. We define three types of incremental
dataframes:
• Append (DA): The update is always appended to the existing data
as new rows. An example of such a relation is the sales transaction
data where only new records are added to the dataset.

• Merge (DM): The update is merged with the existing data based
on a key of the dataframe. This merging operation can lead to
addition of new keys as well as updates in the values of the
dataframe for the existing keys. An example of such a relation is
aggregated daily sales where the addition of new sales transac-
tions modifies the computed average for the sales record.

• Complete (DC): The data is already complete and is not updated
in the context of query processing for online aggregation. An
example of such a relation is a relation containing the zip code
and the corresponding city and country information.

2.2 Incremental Operations
The incremental operations are an extended version of regular
relational algebra operations, with the added property of the type
of input and output incremental dataframes. Table 1 shows the
input and output dataframe types for some of these operations.

Operation Input Output
Filtering (Π) {DA, DM, DC} {DA, DM, DC}
Projection (𝜎) {DA, DM, DC} {DA, DM, DC}
JOIN or UNION DA, {DA, DM, DC} {DA, DM, DA}
JOIN or UNION DM, {DM, DC} {DM, DM}
JOIN or UNION DC, DC DC
GROUP BY AGG {DA,DM,DC} {DM,DM,DC}

Table 1: Type of Input and Output Dataframes for different
Incremental Operations

We define a merge function for each of the operations operating
on DA type of incremental dataframe. The merge function merges

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

SIGMOD ’22, 2022, Woodstock, NY Nikhil Sheoran

Figure 1: DAG for the example query in Section 2.3

the output of the relation on the current table with the output on the
appends to that table while using an optional auxiliary information
store 𝑐 . Mathematically, for an operation 𝑅 on the input dataframe
𝐼 with appends Δ𝐼 , we define the merge operation 𝑔𝑅 such that:

𝑅(𝐼 ∪ Δ𝐼) = 𝑔𝑅 (𝑅(𝐼), 𝑅(Δ𝐼), 𝑐) (1)

The key idea is that we want to re-use the results already computed
on the dataframe to evaluate the result on the updated dataframe.
An example of merge operation for 𝑅 = Π is: Π(𝐼 ∪ Δ𝐼) = Π(𝐼) ∪
Π(Δ𝐼).

2.3 Parsing a Query
We assume that a parser parses the input SQL query𝑄 and provides
us with a Directed Acyclic Graph G such that each node represents
a relational operation with the associated arguments and each edge
from a source to a destination node represents that the output
of the source node is an input to the destination node. For exam-
ple, for 𝑄 = SELECT l_shipmode, COUNT(*) FROM lineitem WHERE
l_shipdate > date 1998-03-14 GROUP BY l_shipmode, Figure
1 shows the DAG structure obtained. The root nodes in the DAG
(FROM) correspond to the input tables. The leaf node’s (SELECT) out-
put corresponds to the query output. Note that based on the input
table’s type (DA/DM/DC) and the operations defined in Table 1, we
populate the type for each of the node in the graph G.

2.4 Processing a Query
In this section, we describe the algorithm to perform online ag-
gregation for an input DAG G. First, we define a node 𝑛 in DAG
G to bemerge-able if no nodes in the paths from the root nodes
(inclusive) to that node (exclusive) are of type DM. Consider the
DAG in Figure 1 with the table lineitem of type DA. Here, all
nodes till GROUP BY AGG are merge-able whereas the node SELECT
is not merge-able. Hence, when we process the query on incremen-
tal data, the partially computed results need not be merged at the
WHERE node and can be merged at the GROUP BY AGG node (the last
merge-able node in the path) before evaluating the SELECT node.
Owing to this, we can delay the merge operation (which increases
the size of the dataframe as it merges it with the current result at
that node) to later nodes in a path in the DAG thus reducing the
required re-computation - processing steps from the merged node
onwards to the leaf node.

Figure 2: Error vs Latency Plot for a TPC-H Query processed
with DeepOLA with 10 partitions. Each point corresponds to
a processed partition.

To process a DAG G on an input table 𝐼 with 𝑘 partitions such
that 𝐼 = ∪{𝐼1, 𝐼2, ..., 𝐼𝑘 }, we start with the update to the leaf nodes
as 𝐼𝑖 and propagate the update from that node to its children nodes.
If any of the children nodes is of type DM, we merge the result at
that node, store this merged result and then re-evaluate the nodes
beyond this on the merged data. Note that, we only need to store
the partial results for the first node of type DM (or the final output
node) in any path. For nodes before that (of type DA), we can simply
evaluate the output appends based on the input appends and for
any nodes after the DM node, we need to re-evaluate the operations
on the merged data.

3 EXPERIMENTS
We describe some preliminary results from our evaluation on the
TPC-H dataset. We generated a partitioned dataset with a scale
factor of 10 and 10 number of partitions using the tpch-dbgen[8]
repo. The generated data was loaded in a PostgreSQL v14.1 data-
base with the necessary indexing optimizations. The original query
results along with the latency time were obtained by evaluating the
queries against this database. DeepOLA’s implementation uses the
Python implementation of Polars [7] as the core data processing
library. All the experiments were performed on an Intel Core i7
with 16 GB of memory.

Figure 2 describes the fraction of complete query evaluation’s
latency on the x-axis vs the estimation error on the y-axis averaged
over 5 different runs for a representative TPC-H query1. As we
can observe, our method not only provides a significant advantage
for estimating the result with reasonable error, but also provides
faster overall result computation - a 2.85x speed-up for the query
in Figure 2.

As the computations are incremental, the time taken to read the
next partition can be further reduced from the critical evaluation
path by performing pre-fetch on the next partition to be read. We
are performing further experiments with these optimizations and
with various different queries and datasets to further strengthen
our results.

1SQL Query: https://github.com/dragansah/tpch-dbgen/blob/master/tpch-queries/1.sql

https://github.com/dragansah/tpch-dbgen/blob/master/tpch-queries/1.sql

DeepOLA: Online Aggregation for Deeply NestedQueries SIGMOD ’22, 2022, Woodstock, NY

REFERENCES
[1] P.J. Haas. 1997. Large-sample and deterministic confidence intervals for online

aggregation. In Proceedings. Ninth International Conference on Scientific and Statis-
tical Database Management (Cat. No.97TB100150). 51–62. https://doi.org/10.1109/
SSDM.1997.621151

[2] Peter J. Haas and Joseph M. Hellerstein. 1999. Ripple Joins for Online Aggregation.
In Proceedings of the 1999 ACM SIGMOD International Conference on Management of
Data (Philadelphia, Pennsylvania, USA) (SIGMOD ’99). Association for Computing
Machinery, New York, NY, USA, 287–298. https://doi.org/10.1145/304182.304208

[3] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. 1997. Online Aggregation.
SIGMOD Rec. 26, 2 (jun 1997), 171–182. https://doi.org/10.1145/253262.253291

[4] Z. Liu and J. Heer. 2014. The Effects of Interactive Latency on Exploratory Visual
Analysis. IEEE Transactions on Visualization and Computer Graphics (2014).

[5] Gang Luo, Curt J. Ellmann, Peter J. Haas, and Jeffrey F. Naughton. 2002. A
Scalable Hash Ripple Join Algorithm. In Proceedings of the 2002 ACM SIGMOD

International Conference on Management of Data (Madison, Wisconsin) (SIG-
MOD ’02). Association for Computing Machinery, New York, NY, USA, 252–262.
https://doi.org/10.1145/564691.564721

[6] Themistoklis Palpanas, Richard Sidle, Roberta Cochrane, andHamid Pirahesh. 2002.
Incremental maintenance for non-distributive aggregate functions. In VLDB’02:
Proceedings of the 28th International Conference on Very Large Databases. Elsevier,
802–813.

[7] Pola-Rs. [n. d.]. Polars: Blazingly fast DataFrames in Rust Python. https://github.
com/pola-rs/polars.

[8] Dragan Sahpaski. [n. d.]. TPCH-DBGEN. https://github.com/dragansah/tpch-
dbgen.

[9] Kai Zeng, Sameer Agarwal, Ankur Dave, Michael Armbrust, and Ion Stoica. 2015.
G-OLA: Generalized On-Line Aggregation for Interactive Analysis on Big Data
(SIGMOD ’15). Association for ComputingMachinery, New York, NY, USA, 913–918.
https://doi.org/10.1145/2723372.2735381

https://doi.org/10.1109/SSDM.1997.621151
https://doi.org/10.1109/SSDM.1997.621151
https://doi.org/10.1145/304182.304208
https://doi.org/10.1145/253262.253291
https://doi.org/10.1145/564691.564721
https://github.com/pola-rs/polars
https://github.com/pola-rs/polars
https://github.com/dragansah/tpch-dbgen
https://github.com/dragansah/tpch-dbgen
https://doi.org/10.1145/2723372.2735381

	1 Introduction
	2 Framework
	2.1 Incremental Dataframe
	2.2 Incremental Operations
	2.3 Parsing a Query
	2.4 Processing a Query

	3 Experiments
	References

