
DeepPlace: Learning to Place Applications in
Multi-Tenant Clusters

Subrata Mitra

Adobe Research

Shanka Subhra Mondal*

IIT Kharagpur

Nikhil Sheoran

Adobe Research

Neeraj Dhake*

IIT Bombay

Ravinder Nehra*

IIT Roorkee

Ramanuja Simha*

Oakridge National Lab

Abstract
Largemulti-tenant production clusters often have to handle a

variety of jobs and applications with a variety of complex re-

source usage characteristics. It is non-trivial and non-optimal

to manually create placement rules for scheduling that would

decide which applications should co-locate. In this paper, we

present DeepPlace, a scheduler that learns to exploits vari-

ous temporal resource usage patterns of applications using

Deep Reinforcement Learning (Deep RL) to reduce resource

competition across jobs running in the same machine while

at the same time optimizing for overall cluster utilization.

ACM Reference Format:
Subrata Mitra, Shanka Subhra Mondal*, Nikhil Sheoran, Neeraj

Dhake*, Ravinder Nehra*, and Ramanuja Simha*. 2019. DeepPlace:

Learning to Place Applications in Multi-Tenant Clusters. In 10th
ACM SIGOPS Asia-Pacific Workshop on Systems (APSys ’19), August
19–20, 2019, Hangzhou, China. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3343737.3343741

1 Introduction
Today, large production environments often need to handle

a large variety of applications, including but not limited to

interactive (user-facing) services, latency sensitive applica-

tions, batch analytics jobs, stream processing, iterative com-

putations, maintenance services, etc. The standard practice

today is to deploy these applications as containers which are

then managed by various container orchestration engines

∗ Work done while at Adobe Research.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

APSys ’19, August 19–20, 2019, Hangzhou, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6893-3/19/08. . . $15.00

https://doi.org/10.1145/3343737.3343741

such as Docker-Swarm [16], YARN [43], Mesos [15], or Ku-

bernetes [5]. These orchestration engines allocate resources

(e.g., CPU and memory) to these jobs according to the es-

timated resource limits provided by the developers [5]. In

a multi-tenant shared cluster, if multiple applications com-

pete for the same shared resources, they slow each other

down due to resource contention [24, 25, 45]. Thus to reduce

the chances of contention, orchestration engines use devel-

oper specified affinity, and anti-affinity) [5, 9] rules to place

applications on different machines. For stateless-services,

resource estimates can be a bit aggressive, such that the re-

sources allocated to each of the deployed containers would

be enough to make it run smoothly, while the load fluctua-

tions can be handled through an autoscaling mechanism by

increasing or decreasing the number of deployed containers

on the fly. For stateful-services, autoscaling can be really

tricky and reactive migration of containers across machines

have high overheads [9]. Hence, the containers are usually

deployed with very conservative estimates by specifying

large resource limits so that they can sustain phases with sub-

stantial increase in the resource demands. However, periods

with such high resource usages are rare and often span only

a very short fraction of the life-cycle of application, leading

to resource wastage during the comparatively idle times.

In most of the real production systems, not all the applica-

tions would require to use the peak resource at the same time,

and not all phases of their execution would contend for re-

sources in a similar manner [1, 37, 45]. For example, Figure 1

shows the CPU usage characteristics of three production ser-

vices in our cluster, across various phases of their execution.

Their temporal resource usages show several "peaks" and
"valleys", some more regular than the others. For user-facing

services, such temporal resource usages can have daily and

seasonal patterns due to fluctuations in user-demands [30]

(e.g. some services are mostly used during working hours,

while some services are mostly used during major holidays

seasons). Applications can have different resource usage pat-

terns across algorithmic phases [31, 45, 48], e.g., between the

map and reduce phases in map-reduce jobs. Because of these

temporal variations in the resource usage, deploying for peak
using developer-provided limits is inefficient from an overall

61

https://doi.org/10.1145/3343737.3343741
https://doi.org/10.1145/3343737.3343741

APSys ’19, August 19–20, 2019, Hangzhou, China S. Mitra, S.S. Mondal, N. Sheoran, N. Dhake, R. Nehra, and R. Simha

Figure 1: Examples of resource usages by three production services with several "peaks" and "valleys".

resource utilization perspective. The variety of applications

and the complexity of their temporal resource usage patterns

makes it infeasible for the developers to express the place-

ment logic in terms of existing placement rules available

in current schedulers, e.g., affinity and anti-affinity rules in

Kubernetes [2].

Borg [44] partially addresses this problem by packing a

mix of high and low priority jobs in each machine, so that

high priority jobs can expand during load spikes whereas

low priority jobs can take advantage during the idle periods

of the high priority jobs. However, not all clusters see such

a health mix of low priority jobs to effectively fill the valleys

of the high priority jobs.

Along with the temporal usage patterns, some jobs might

have dependent succeeding jobs that rely on the completion

of the first job. These dependencies can be intra or inter ser-

vices. For example, a customer might have a nightly recom-

mendation model builder, post completion of which a service

kicks in to generate a new set of recommendations. A job

scheduler that is aware of such dependencies can further uti-

lize this information to efficiently schedule the existing jobs

while making room for the upcoming jobs. A central sched-

uler can even discover serendipitous dependencies between
different jobs coming from completely different developer

groups, opening up scopes for resource alignment among

these jobs leading to improved utilization of the cluster.

In this paper, we introduce an early prototype of Deep-
Place, a self-learning scheduler that can opportunistically

place containerized applications such that their temporal

resource usages are aligned, resource contentions are min-

imized, quality of service is maintained and overall utiliza-

tion improved.DeepPlace uses deep reinforcement learning

(Deep RL) to learn hidden patterns from historical data over

time to improve its scheduling policy. Essentially, Deep-
Place treats resource usages of the applications as a mul-
tivariate timeseries and learns how these timeseries can be

placed across different machines so that their resource us-

ages are better aligned. We show through some example

cases, how DeepPlace can take non-trivial decisions by an-

ticipating future placement requests in order to optimize the

overall resource usage in the cluster. For stateful-services,

DeepPlace helps by minimizing the chances of resource

contention, without being overly conservative, leading to

operational excellence. For stateless-services, the need for

scaling-up can be reduced by having a better placement to

begin with. With a better placement, a small number of con-

tainers might be able to gracefully handle the load up to a

certain extent without a need for scaling-up. However, when

scaling-up does happen, where to place those new additional

containers is another crucial question, as usually in container

scaling new machines are not spawn off frequently, that can

be answered by DeepPlace.

2 Background and Related Work
Reinforcement Learning. In RL, at a high-level, an agent

interacts with a system and tries to learn an optimized policy.

At each timestep t , the agent observes the state of the system
st , and chooses to take an action at that changes the state
to st+1 at timestep t + 1, and the agent receives a reward

rt . The agent tries to maximize the received reward which

would help it to learn an optimized policy. It is assumed that

the state transitions and rewards are stochastic and the state

transition probabilities and rewards depend only on the state

of the environment st and the action taken by the agent at
(i.e., show Markov property [41]).

The objective is to maximize the expected cumulative dis-

counted reward: E[
∑∞

t=0 γ
trt] where γ ∈ (0, 1) determines

how much the future rewards contribute to the total reward.

More details of theoretical background of RL can be found

in [41] and [26]. Inspired by the recent trends in Deep Re-

inforcement Learning (DeepRL), in this paper, we use deep-

neural-networks (DNNs) as a function approximator for the

placement policy that DeepPlace wants to learn. The RL

algorithm can perform gradient-descent on the parameters

of this DNN so that it can maximize the expected cumula-

tive discounted reward over the actions the RL-agent takes.

The gradients are estimated by observing the trajectories of

execution that are obtained by following the policy.

RL has been used in variety of scenarios including learning

complex games [12, 20, 32], robotics [18, 19, 33], and very

recently for video streaming [27], routing [4, 28, 42], device

placement [29]. But, the application of RL to self-learning

schedulers has not been thoroughly explored.

Scheduling. To the best of our knowledge, recently pro-

posed DeepRM [26] is the only other self-learning scheduler

that also attempts to learn novel scheduling policy using

DeepRL. DeepRM has a very simplified view of the cluster

and thus comes with several limitations.

62

DeepPlace: Learning to Place Applications in Multi-Tenant Clusters APSys ’19, August 19–20, 2019, Hangzhou, China

(1) DeepRM assumes that jobs will always take a fixed amount

of resources. It does not capture their temporal variations.

Users often overestimate resource requirements and there

can be a significant difference in resource usage between a

peak-load and off-peak loads (Figure 1). Thus, ignoring such

temporal variations and using the user-specified resource-

limits for placement is wasteful and leads to low utilization.

(2) DeepRM models the resource capacity of the compute clus-

ter as a single monolithic block. It does not have a machine

specific view and during its scheduling decisions, it does

not try to optimize for the set of job or services to be run

together to avoid resource contention.

(3) The single monolithic view of the total resource capacity of

the cluster ignores the impacts of resource fragmentation

(i.e., the total amount of available resource in the cluster is

more than the requirement of a job, but no single machine

has that much available resources left.)

Tetris [13] is another heuristic-based cluster scheduler

that takes into account multiple resource dimensions as well

as the alignment of the machine’s remaining usage with the

job’s requirement for packing jobs to the machines.

A large body of work has focused on scheduling data-

driven applications, long-running user-facing services, ML-

services, etc. on multi-tenant commodity clusters covering

various aspects such as fairness of resource sharing [10, 11,

13, 17, 35, 36], tail-latency optimization [8, 14, 21, 23, 38, 40,

46] and how to protect latency sensitive application while

improving cluster utilization [3, 6, 7, 22, 34, 39, 44, 45, 47].

These are distinct from our work as none of these scheduler

attempt to self-learn the best scheduling strategy by discov-

ering hidden resource usage characteristics and dependence

among applications, along multiple resource dimensions.

However, some of the proposed techniques (e.g. cycle-per-

instruction [49]) can be used with our technique to further

fine-tune reward/penalty design.

3 Design
We now describe the design of DeepPlace explaining how
it operates. DeepPlace observes temporal job behavior to

optimize its policy, encoded in a DNN-based policy network,

using RL. DeepPlace models the scheduling problem as an

RL-environment where the compute cluster is composed of

N machines on which the application services or jobs are

to be scheduled. Each such machine has Cd amount of total

physical resource capacity for resource dimension d (e.g.,

CPU, Memory, etc.). For a job or service j, DeepPlace ob-

serves the time-series of the resource usages denoted as rdj (t),
where rd is the resource usage along the resource dimension

d .DeepPlace also keeps track of the current placement map

of which services or jobs are running on which machines as

well as what are the incoming services or jobs that need to

be scheduled in the cluster, as a queue. The purpose of the

Figure 2: Input space representation of DeepPlace

Figure 3: Workflow of DeepPlace

queue is to incorporate in the state representation, a view

of the upcoming jobs thus allowing the scheduler to learn

the arrival patterns and dependencies amongst the jobs. The

complete workflow for DeepPlace is shown in Figure 3.

3.1 State Space Representation
DeepPlace’s state space representation is inspired by [26].

Though DeepRM’s representation for scheduling is designed

to answer: "what job to schedule when", DeepPlace is de-

signed primarily to answer: "what job to schedule where". In
extreme cases, DeepPlace can delay some scheduling de-

cisions if no suitable placement exists. Thus, DeepPlace
makes some key improvements in the input-space represen-

tation to capture the degree of competition for resources

among the jobs sharing the same underlying resources of a

machine and their temporal variations in resource usages.

Figure 2 illustrates the input-space representation.

(1) State of each machine in the cluster is represented as a

2D matrix or an image with k x Cd pixels for each of the

resource dimension d , where k is the number of previous

logical timesteps.

(2) Within each machine, the vertical direction of the image

(i.e., the matrix) represents the time axis and shows the

utilization of jobs for up to k previous logical timesteps, and

the horizontal direction represents the amount of resource

used by each job/services (quantized into units of resources).

This type of representation helps the DNN-based RL-agent

to learn the temporal resource usage characteristics of each

job. k is a configurable parameter that the user can choose.

The value of k should be a number reasonably large enough

w.r.t. scheduling time-scale so that it helps the agent to

capture a significant overlap among applications as well as

63

APSys ’19, August 19–20, 2019, Hangzhou, China S. Mitra, S.S. Mondal, N. Sheoran, N. Dhake, R. Nehra, and R. Simha

temporal variations in the resource usage. However, larger

k results in longer convergence time for the RL-agent.

(3) For each machine, the number of pixels in the horizontal

direction (Cd) represents the resource capacity of that ma-

chine for resource dimension d . Cd is another configurable

parameter that user can choose depending on the granular-

ity of resource usage that needs to be tracked. Larger Cd
results in longer convergence time for the RL-agent.

(4) After each machine, there is a column representing the

applications or jobs scheduled and waiting to be run in the

machine. This representation is important for DeepPlace
to take multiple decisions in the same logical timestep. Even

if the machine representation is not showing the resource

usage of the scheduled application (as time has not pro-

ceeded), the column will give an insight to the agent that

in the next timestep the application will be running in that

machine and hence helps in taking the next action in the

same logical timestep.

(5) The pixels of the image representing machine-states (i.e.,

the values in the matrix) are colored differently to denote

how much of the available capacity of the machine is being

used at what time by which job. To make DeepPlace scal-
able, we consider that DeepPlace will attempt to learn the

characteristics of up to G types or equivalence-classes of

applications, and each type of application is represented by

a unique number between 0 and 1, both exclusive (this is

analogous to a different color of the corresponding pixels

in the image). The unused resources are marked with white
color (or a value of 0 in the matrix). DeepPlace uses these

colors (i.e. the numbers) to learn which type of applications

when run together can potentially suffer from resource

competition and for how long such competition might last.

(6) There can be multiple instances of the same application

type running in the same machine with an overlap in

their duration (e.g. two instances of a face-detection ser-

vice triggered by two different products). These different

instances can potentially also create resource contention

among themselves (e.g. when the application is highly CPU

intensive) and therefore needs to be distinguished and cap-

tured by the RL-agent. We again assign different colors (i.e.,

floating point numbers) to each instance of the application

that are unique but close-by within a small range to the

original assigned color for that job type.

(7) DeepPlace captures the state of individual machines and

combines these machine-level state representations into a

cluster-level state representation for creating a holistic in-

put for the policy-network. DeepPlace does that by using

a trick: (a) To clearly distinguish between the applications

running in different machines, DeepPlace adds a different
factor for different machines to the number (or color) as-

signed to the machine usage as well as the column contain-

ing the scheduled jobs. For example, if two instances of the

same type of application with assigned number representa-

tion 0.2, are running in two different machines (machine

1 and 2), then in the combined state-space representation,

these tasks will be represented as 1.2 and 2.2 respectively.

(8) Along with the combined representation of the machines,

DeepPlace also keeps a waiting-queue in its state-space

representation. This queue represents the tasks waiting to

be scheduled. By observing the changes in the queue over

time, the RL-agent learns some key dynamics about the

arrival characteristics of the jobs, which type of and how

many jobs come together, and the temporal dependency

amongst them, as previously discussed.

3.2 Reward/Penalty Design
DeepPlace is driven by negative rewards (penalty) which

has the following four components:

Resource contention penalty. To help DeepPlace learn

a placement policy that results in better resource alignment

(complementary) and avoid resource contention among tasks

scheduled in the same machine we use a modified version of

cross-correlation to penalize the RL-agent during its learn-

ing. Cross-correlation (Cr) is calculated between all pairs of

tasks i and j running on the same machine across resource

dimension d as follows:

Cr(i, j, d) =
min(Ti,Tj)∑

t=0

res_usage(i, t, d) × res_usage(j, t, d)

whereTi is the length of task i and res_usaдe(i, t ,d) is the
instantaneous resource demand across dimension d by task

i at time t . Cross-correlation formula amplifies the effect of

two peaks being scheduled together. The Cr for a particular
state of the cluster is calculated by taking the sum of cross-

correlation of each machine, which includes across all the

resource dimensions (CPU or memory), the cross-correlation

of each task with every other task in that machine.

Resource over-utilization penalty. To prevent schedul-

ing of more tasks than that can be handled by a machine,

there is a high penalty if the machine is not able to meet the

resource requirement of tasks scheduled in that machine. It

is calculated by adding a high negative factor each time a

machine is unable to provide appropriate resources to the

running tasks.

Wait-time penalty. To prevent the scheduler from holding

jobs for a long time in search of a better place, we add a

constant penalty proportional to the state of the waiting

queue. It is equal to the number of waiting tasks in the queue

multiplied by a negative constant at each time.

Under-utilization penalty. Since our goal is to improve

overall utilization of the cluster by helping the scheduler

learn how to achieve tighter packing and pack on less number

of machines, if possible, we add a penalty proportional to the

sum of unused resources in the used machines. White pixels

64

DeepPlace: Learning to Place Applications in Multi-Tenant Clusters APSys ’19, August 19–20, 2019, Hangzhou, China

in our state-representations denote the number of unused

resources at any given time.

4 Implementation
We use the modified version of REINFORCE algorithm as

mentioned in [26]. The policy network consists of a single

hidden layer of 20 neurons followed by output neurons equal

to the number of actions (number of machines under con-

sideration). We use a 36 core CPU server and python multi-

processing to create multiple workers (equal to batch size+1)
each operating on distinct examples, taking a fixed number

of trajectories and accumulating gradients. The last worker

is used to combine the gradients of each worker and send to

the policy network for updating the parameters. This gives

a major improvement in the training speed. The training

time increases significantly as we increase the cluster load. It

also depends significantly on the type of applications under

consideration (For example, Long running vs Short running

jobs). For the hidden layer, we use Relu activation function,

while for the output layer we use softmax activation. We use

Adam optimizer and a learning rate of 0.001. The number of

trajectories taken by each worker is fixed at 20.

5 Evaluations
[Workload.] In our evaluation setup, jobs arrive online as a

Poisson process. The average job arrival rate is calibrated to

create three average cluster load scenarios: 30%, 50% and 80%.

In our setup, 50% of the jobs are long running and the other

half are short running. Each job has 2 dimensions of resource

requirements: CPU and memory. The capacity of these two

resources in each machine is denoted by {1r , 1r } For each
job, dominant resource usage is randomly chosen to be ei-

ther CPU or memory. The resource usage of the dominant

resource is independently chosen from a uniform distribu-

tion between 0.3r and 0.5r. The non-dominant resource usage

is also independently and uniformly varied between 0.08r

and 0.16r. Thus there is no correlation between the CPU and

memory usages. Temporal resource usage for each job varies

as a square wave with period uniformly chosen between

0.2t and 0.5t and width as one-fourth of the period, where t
denotes the job length. Total 50 such different jobs are used

for training and 18 for testing. Our evaluation runs with a

cluster of 10 machines.

[Baselines.] We compare DeepPlace with Tetris [13],

which schedules jobs on machines based on how well job’s

resource requirement aligns with the machine’s available

resources balancing preferences for short jobs and packing

in a combined score. We also compare it against Best Fit
heuristic which allocates the job to the machine having the

least units of the dominant resource of the job left.

Note: It is not possible to directly compare DeepPlace with
DeepRM [26] because DeepRM only specifies which job to be

scheduled next and does not say on which machine it should
be scheduled. Thus DeepRM does not have any concepts of
competition for resource usage among applications running in
the same machine, resource fragmentation and machine-level
over-utilization. Thus, a fair comparison with DeepRM with
respect to our desired metrics is not possible.
[Learning Progress.] We first show how DeepPlace’s
learning converge across multiple iterations in Figure 4.

It can be observed that roughly after 1000 iterations,

DeepPlace’s policy learning starts to converge and does not
see any further significant drop in the normalized penalty.

[Improvement in Cluster Utilization.] We measure av-

erage utilization of machines for each resource as:

Avg Util =

∑T
t=0 Utilization across all machines at time t

T ×max(used machines) × resource capacity

where T is the length of the observation period. Since the

number of machines that are actually being actively used

varies over time, in the denominator, we used maximum

number of machines used at any point in time to normalize.

[Comparing Scheduling Efficiency.]Here in Figure 7, we
show how DeepPlace optimizes for cluster utilization for

both CPU and memory. We can see that DeepPlace can pro-

vide a 68-100% increase in average utilization compared to

Tetris across different cluster-load conditions. This is primar-

ily achieved by efficient packing that requires significantly

less number of machines to be used compared to Tetris as

shown in Figure 5. Further, it can be observed that the gap

between DeepPlace and Tetris in terms of the number of

machines required to accommodate the jobs increases with

the increase of the cluster load. Although it looks like BestFit
provides even higher utilization because it just packs the

jobs into the machines without any knowledge of peak or

future resource usages of the jobs and as a consequence,

BestFit suffers from huge over-utilization of the resources as

shown in Figure 6. On the other hand, over-utilization due

to DeepPlace’s placement decisions are almost negligible.

Tetris already includes peak resource usage information in

its placement decision thus resulting in no resource over-

utilization.

[Improvement in Resource Fragmentation.] Fragmen-

tation score of a cluster at a high-level measure what part of

all the available resource in a cluster are concentrated.

Avg Frag = 1 −

T∑
t=0

max(available space across all machines at t)

Sum of available space over all machines at t

The lower the fragmentation score, the higher the ability of

the cluster to schedule unanticipated large jobs. Hence, low

resource fragmentation in the cluster is a desirable opera-

tional property. In Figure 8, we see DeepPlace provides 6-
13% reduction in resource fragmentation compared to Tetris.

DeepPlace’s intelligent placement which takes both tempo-

ral resource usage characteristics and job arrival patterns

65

APSys ’19, August 19–20, 2019, Hangzhou, China S. Mitra, S.S. Mondal, N. Sheoran, N. Dhake, R. Nehra, and R. Simha

Figure 4: Convergence of DeepPlace’s train-
ing under 50% average load

Figure 5: Comparison of number of ma-
chines used

Figure 6: Comparison of over-utilization in
the cluster

(a) CPU utilization (b) Memory utilization
Figure 7: Comparison of average resource utilization in the cluster

(a) CPU fragmentation (b) Memory fragmentation
Figure 8: Comparison of resource fragmentation level in the cluster

(a) Learned example 1 (b) Learned example 2
Figure 9: Examples of learned placement policies

leaves bigger room in the machines (i.e. less fragmentation

score) to accommodate unanticipated large jobs.

6 Discussions
In this section, we discuss insights and applicability for real

deployments.

What DeepPlace learned? Figure 9 illustrates how Deep-
Place achieved better packing that ultimately resulted in

higher overall utilization. Figure 9a shows how Job1 and

Job2 were placed in the same machine because resource in-

tensive parts of Job1 would finish before the resources are

required by Job2. In Figure 9b, resource requirements for

Job3 and Job4 alternate in such a manner that they do not

exactly overlap with each other and thus placed in the same

machine for better packing. All these patterns were learned

by DeepPlace on its own without any guiding rules.

Scheduling granularity for effectiveness. DeepPlace
looks at where to schedule an incoming application so that

it can either improve the resource utilization or reduce the

resource contention. However, how often such a placement

decision needs to be made depends on the what kind of

workload the cluster is handling. For a cluster handling

short or medium-duration batch, cron or interactive

applications, frequent placement decisions need to be

made and DeepPlace can be very useful. On the other

hand, for long running services, typically new placement

decisions are made less frequently, e.g., when the container

for an upgraded service is being deployed, etc. However, if

auto-scaling is enabled for these services, taking the decision

on where the additional auto-scaled container should be

placed in the cluster, can be suggested by DeepPlace.
Cluster size. Our input-space representation as well as

action-space of the RL is proportional to the number of ma-

chines in the cluster. Hence, larger the size of the cluster, the

more iterations and training examples it needs for its policy

learning to converge.

Bootstrapping learning in deployments. DeepPlace
uses historical time-series pattern of resource usages to

learn what job is to be scheduled in which machine so

that based on their resource usage characteristics, they

either improve the overal utilization or avoid aggravating

contention by using the same resource at the same time.

If DeepPlace starts to learn from scratch, it can be long

before it sees sufficient examples required for its learning to

converge. An option to speed up learning by bootstrapping

the RL-agent’s policy is by replaying the time-series of

historical resource usage through a simulation.

To conclude, in this paper we show an early design proto-

type of a self-learning scheduler that can exploit the temporal

resource usage patterns and arrival dependencies of the jobs

to provide a better placement policy and thus achieve better

utilization without requiring any manually crafted rules or

heuristics.

66

DeepPlace: Learning to Place Applications in Multi-Tenant Clusters APSys ’19, August 19–20, 2019, Hangzhou, China

References
[1] Amvrosiadis, G., Park, J. W., Ganger, G. R., Gibson, G. A., Baseman,

E., and DeBardeleben, N. On the diversity of cluster workloads and

its impact on research results. In 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18) (2018), pp. 533–546.

[2] Authors, T. K. Affinity and anti-affinity. https://kubernetes.io/docs/

concepts/configuration/assign-pod-node/#affinity-and-anti-affinity.

[3] Boutin, E., Ekanayake, J., Lin, W., Shi, B., Zhou, J., Qian, Z., Wu,

M., and Zhou, L. Apollo: Scalable and coordinated scheduling for

cloud-scale computing. In OSDI (2014), vol. 14, pp. 285–300.
[4] Boyan, J. A., and Littman, M. L. Packet routing in dynamically

changing networks: A reinforcement learning approach. In Advances
in neural information processing systems (1994), pp. 671–678.

[5] Burns, B., Grant, B., Oppenheimer, D., Brewer, E., and Wilkes, J.

Borg, omega, and kubernetes. Queue 14, 1 (2016), 10.
[6] Delimitrou, C., and Kozyrakis, C. Paragon: Qos-aware scheduling

for heterogeneous datacenters. In ASPLOS (2013).
[7] Delimitrou, C., and Kozyrakis, C. Quasar: Resource-efficient and

qos-aware cluster management. In ASPLOS (2014).
[8] Ferguson, A. D., Bodik, P., Kandula, S., Boutin, E., and Fonseca, R.

Jockey: guaranteed job latency in data parallel clusters. In Proceedings
of the 7th ACM european conference on Computer Systems (Eurosys)
(2012), ACM, pp. 99–112.

[9] Garefalakis, P., Karanasos, K., Pietzuch, P. R., Suresh, A., and

Rao, S. Medea: scheduling of long running applications in shared

production clusters. In EuroSys (2018), pp. 4–1.
[10] Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S.,

and Stoica, I. Dominant resource fairness: Fair allocation of multiple

resource types. In Nsdi (2011), vol. 11, pp. 24–24.
[11] Ghodsi, A., Zaharia, M., Shenker, S., and Stoica, I. Choosy: Max-

min fair sharing for datacenter jobs with constraints. In Proceedings of
the 8th ACM European Conference on Computer Systems (2013), ACM,

pp. 365–378.

[12] Gibney, E. Google ai algorithm masters ancient game of go. Nature
News 529, 7587 (2016), 445.

[13] Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S., and

Akella, A. Multi-resource packing for cluster schedulers. ACM
SIGCOMM Computer Communication Review 44, 4 (2015), 455–466.

[14] Haqe, M. E., He, Y., Elnikety, S., Bianchini, R., McKinley, K. S.,

et al. Few-to-many: Incremental parallelism for reducing tail latency

in interactive services. In ACM SIGPLAN Notices (2015), vol. 50, ACM,

pp. 161–175.

[15] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D.,

Katz, R. H., Shenker, S., and Stoica, I. Mesos: A platform for fine-

grained resource sharing in the data center. In NSDI (2011), vol. 11,
pp. 22–22.

[16] Inc., D.

[17] Joe-Wong, C., Sen, S., Lan, T., and Chiang, M. Multiresource alloca-

tion: Fairness-efficiency tradeoffs in a unifying framework. IEEE/ACM
Transactions on Networking (TON) 21, 6 (2013), 1785–1798.

[18] Kaelbling, L. P., Littman, M. L., and Moore, A. W. Reinforcement

learning: A survey. Journal of artificial intelligence research 4 (1996),
237–285.

[19] Kober, J., Bagnell, J. A., and Peters, J. Reinforcement learning in

robotics: A survey. The International Journal of Robotics Research 32,
11 (2013), 1238–1274.

[20] Lample, G., and Chaplot, D. S. Playing fps games with deep rein-

forcement learning. In AAAI (2017), pp. 2140–2146.
[21] Leverich, J., and Kozyrakis, C. Reconciling high server utilization

and sub-millisecond quality-of-service. In EuroSys (2014).
[22] Lo, D., Cheng, L., Govindaraju, R., Ranganathan, P., and

Kozyrakis, C. Heracles: Improving resource efficiency at scale. In

ISCA (2015).

[23] Mace, J., Bodik, P., Fonseca, R., and Musuvathi, M. Retro: Targeted

resource management in multi-tenant distributed systems. In NSDI
(2015), pp. 589–603.

[24] Maji, A. K., Mitra, S., and Bagchi, S. Ice: An integrated configuration

engine for interference mitigation in cloud services. In 2015 IEEE
International Conference on Autonomic Computing (2015), IEEE, pp. 91–
100.

[25] Maji, A. K., Mitra, S., Zhou, B., Bagchi, S., and Verma, A. Miti-

gating interference in cloud services by middleware reconfiguration.

In Proceedings of the 15th International Middleware Conference (2014),
ACM, pp. 277–288.

[26] Mao, H., Alizadeh, M., Menache, I., and Kandula, S. Resource

management with deep reinforcement learning. In Proceedings of the
15th ACM Workshop on Hot Topics in Networks (2016), ACM, pp. 50–56.

[27] Mao, H., Netravali, R., and Alizadeh, M. Neural adaptive video

streaming with pensieve. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (2017), SIGCOMM ’17.

[28] Mestres, A., Rodriguez-Natal, A., Carner, J., Barlet-Ros, P., Alar-

cón, E., Solé, M., Muntés-Mulero, V., Meyer, D., Barkai, S., Hib-

bett, M. J., et al. Knowledge-defined networking. ACM SIGCOMM
Computer Communication Review (2017).

[29] Mirhoseini, A., Pham, H., Le, Q. V., Steiner, B., Larsen, R., Zhou, Y.,

Kumar, N., Norouzi, M., Bengio, S., and Dean, J. Device placement

optimization with reinforcement learning. In ICML (2017).

[30] Mishra, A. K., Hellerstein, J. L., Cirne, W., and Das, C. R. Towards

characterizing cloud backendworkloads: insights from google compute

clusters. ACM SIGMETRICS Performance Evaluation Review 37, 4 (2010),
34–41.

[31] Mitra, S., Gupta, M. K., Misailovic, S., and Bagchi, S. Phase-aware

optimization in approximate computing. In 2017 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO) (2017),
IEEE, pp. 185–196.

[32] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,

Wierstra, D., and Riedmiller, M. Playing atari with deep reinforce-

ment learning. arXiv preprint arXiv:1312.5602 (2013).
[33] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Belle-

mare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski,

G., et al. Human-level control through deep reinforcement learning.

Nature 518, 7540 (2015), 529.
[34] Nathuji, R., Kansal, A., and Ghaffarkhah, A. Q-clouds: managing

performance interference effects for qos-aware clouds. In Proceed-
ings of the 5th European conference on Computer systems (2010), ACM,

pp. 237–250.

[35] Parkes, D. C., Procaccia, A. D., and Shah, N. Beyond dominant

resource fairness: Extensions, limitations, and indivisibilities. ACM
Transactions on Economics and Computation (TEAC) 3, 1 (2015), 3.

[36] Popa, L., Kumar, G., Chowdhury, M., Krishnamurthy, A., Rat-

nasamy, S., and Stoica, I. Faircloud: sharing the network in cloud

computing. ACM SIGCOMM Computer Communication Review 42, 4
(2012), 187–198.

[37] Reiss, C., Tumanov, A., Ganger, G. R., Katz, R. H., and Kozuch, M. A.

Heterogeneity and dynamicity of clouds at scale: Google trace analysis.

In Proceedings of the Third ACM Symposium on Cloud Computing (2012),
ACM, p. 7.

[38] Ren, X., Ananthanarayanan, G., Wierman, A., and Yu, M. Hopper:

Decentralized speculation-aware cluster scheduling at scale. In ACM
SIGCOMM Computer Communication Review (2015), vol. 45, ACM,

pp. 379–392.

[39] Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., and Wilkes,

J. Omega: flexible, scalable schedulers for large compute clusters. In

67

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#affinity-and-anti-affinity

APSys ’19, August 19–20, 2019, Hangzhou, China S. Mitra, S.S. Mondal, N. Sheoran, N. Dhake, R. Nehra, and R. Simha

Proceedings of the 8th ACM European Conference on Computer Systems
(2013), ACM, pp. 351–364.

[40] Suresh, P. L., Canini, M., Schmid, S., and Feldmann, A. C3: Cutting

tail latency in cloud data stores via adaptive replica selection. In 12th
USENIX Symposium on Networked Systems Design and Implementation
(2015), USENIX Association, pp. 513–527.

[41] Sutton, R. S., Barto, A. G., et al. Reinforcement learning: An intro-
duction. MIT press, 1998.

[42] Valadarsky, A., Schapira, M., Shahaf, D., and Tamar, A. Learning

to route. In Proceedings of the 16th ACM Workshop on Hot Topics in
Networks (2017), ACM, pp. 185–191.

[43] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar,

M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth, S., et al. Apache

hadoop yarn: Yet another resource negotiator. In Proceedings of the
4th annual Symposium on Cloud Computing (2013), ACM, p. 5.

[44] Verma, A., Pedrosa, L., Korupolu, M. R., Oppenheimer, D., Tune, E.,

and Wilkes, J. Large-scale cluster management at Google with Borg.

In EuroSys (2015).

[45] Xu, R., Mitra, S., Rahman, J., Bai, P., Zhou, B., Bronevetsky, G.,

and Bagchi, S. Pythia: Improving datacenter utilization via precise

contention prediction formultiple co-locatedworkloads. In Proceedings
of the 19th International Middleware Conference (2018), ACM, pp. 146–

160.

[46] Xu, Y., Musgrave, Z., Noble, B., and Bailey, M. Bobtail: Avoiding

long tails in the cloud. In NSDI (2013).
[47] Yang, H., Breslow, A., Mars, J., and Tang, L. Bubble-flux: Precise

online qos management for increased utilization in warehouse scale

computers. In International Symposium on Computer Architecture
(ISCA) (2013), pp. 607–618.

[48] Zhang, J., Yousif, M., Carpenter, R., and Figueiredo, R. J. Appli-

cation resource demand phase analysis and prediction in support of

dynamic resource provisioning. In Fourth International Conference on
Autonomic Computing (ICAC’07) (2007), IEEE, pp. 12–12.

[49] Zhang, X., Tune, E., Hagmann, R., Jnagal, R., Gokhale, V., and

Wilkes, J. Cpi2: Cpu performance isolation for shared compute clus-

ters. In EuroSys (2013).

68

