DeepPlace: Learning to Place Applications in Multi-Tenant Clusters

Nikhil Sheoran (Adobe Research - Bangalore, India)

Collaborators

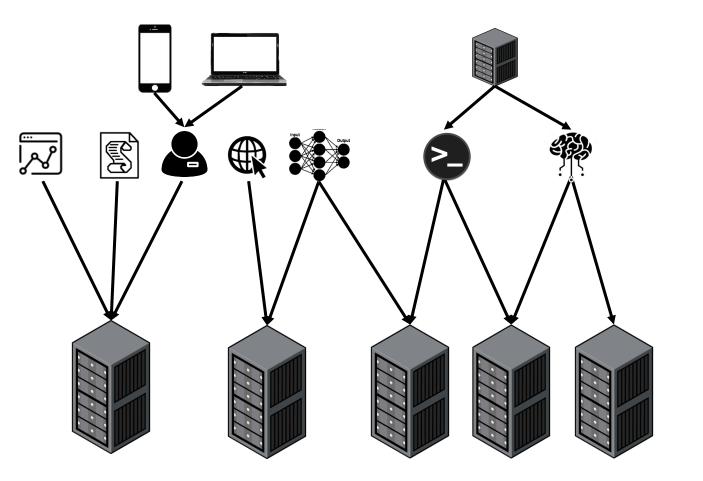
Subrata Mitra (Adobe Research), Shanka Subhra Mondal (IIT Kharagpur) *, Neeraj Dhake (IIT Bombay) *, Ravinder Nehra (IIT Roorkee) *, Ramanuja Simha (Oakridge National Lab) *

* work done while at Adobe Research

#AdobeRemix Hiroyuki-Mitsume Takahashi

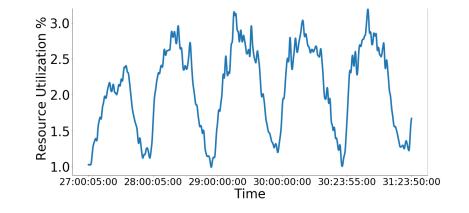
The Multi-Tenant Computation Landscape

- Variety of Applications
 - Ex: User-facing, Batch Analytics, etc.
- Variety of Resource Needs
 - Ex: Resource intensive
- Variety of User Expectations
 - Ex: Latency Sensitive



Improving Variance – Through Resource Limits

- Developers Can specify Resource Limits.
- Overly Conservative estimates.
 - For adverse situation.
- Poor utilization.
 - Peak is (way) less than estimated.
 - Peak doesn't remain for majority of time.



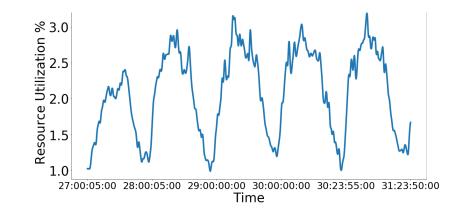
Improving Variance – Through Constraints

- To give better control to developers, schedulers provide ways to specify constraints.
- Based on estimates (generally conservative) and heuristics.
- Issue Limited Expressibility

Placement Constraints in Marathon (Apache Mesos)

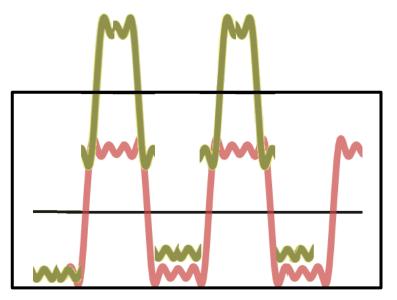
Where they fail – Temporal Patterns

- Temporal Patterns
 - Across Time (ex. Daily, Seasonal, etc.)
 - Across Algorithmic Phases (ex. Map-Reduce, etc.)
- Long-running Jobs
 - More peaks and valleys.
 - Relatively high predictability.
- Short-running Jobs
 - Can fit in valleys of long-running.
 - Though less predictability.

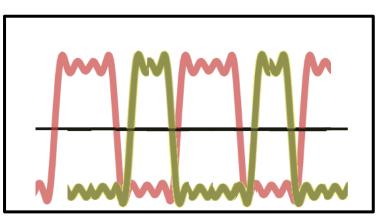


Where they fail – Temporal Alignment

- Minor temporal mis-alignment can lead to inefficient scheduling.
- Placement 1 overshoots the resource usage while Placement 2 efficiently completes.



Placement 1 - Temporally Mis-aligned (Overshoots)

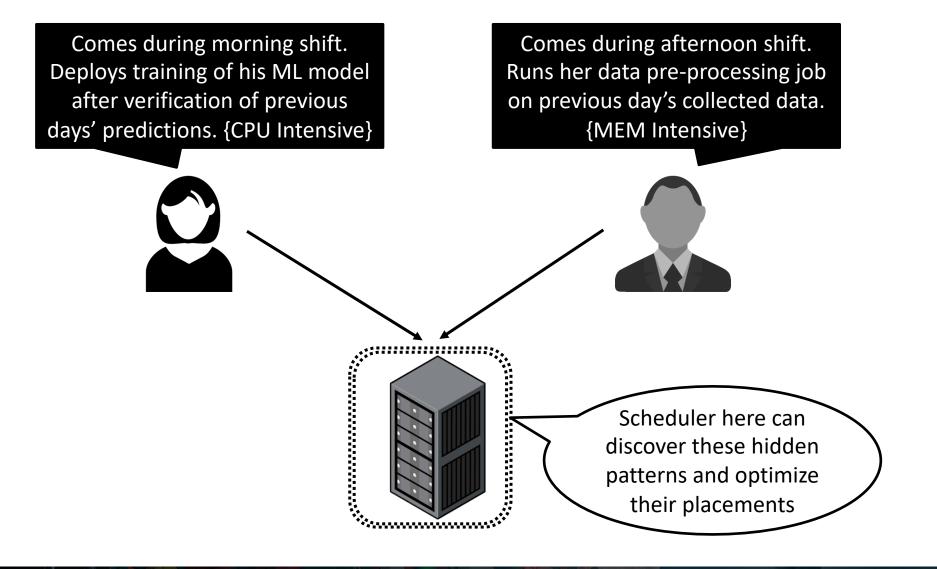


Placement 2 - Temporally Aligned

M Job 1

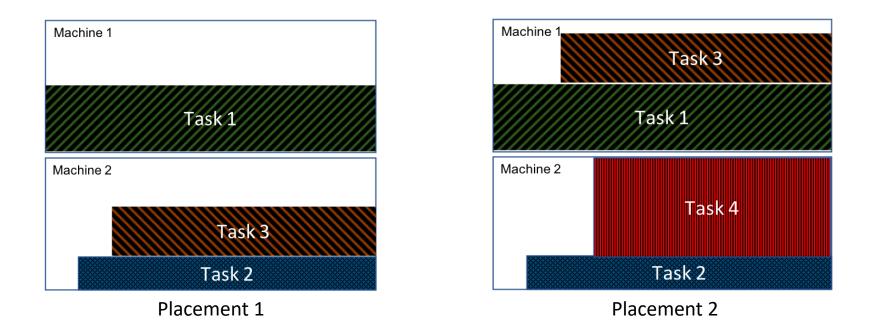
Job 2

Where they fail – Job "Dependencies"



Where they fail – Fragmentation

Given load be "Task 1 (0.5r), Task2 (0.25r), Task 3 (0.375r) and Task 4 (0.75r)"



- Placement 1 Although same total resources available, but is fragmented.
- Placement 2 Able to schedule all 4 tasks.

What should be done?

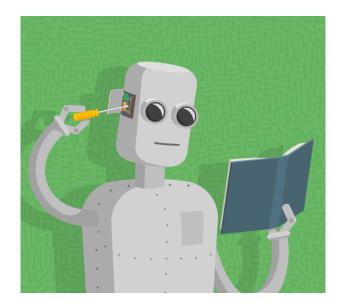
At a scheduling decision

- Analyze current state of all the machines.
- Decide on which machine to place the next application.
- Observe the benefits obtained from this decision.
- Improve our decisions based on these observations.

Formalizing It

Build a *self-learning* scheduler to *opportunistically* place containerized applications such that

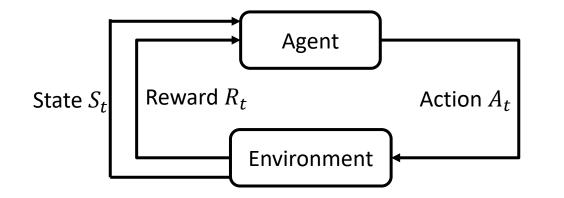
- Temporal Usages are aligned,
- Resource Contentions are minimized,
- Quality of Service is maintained and
- **Overall Resource Utilization** improved.



What should be done?

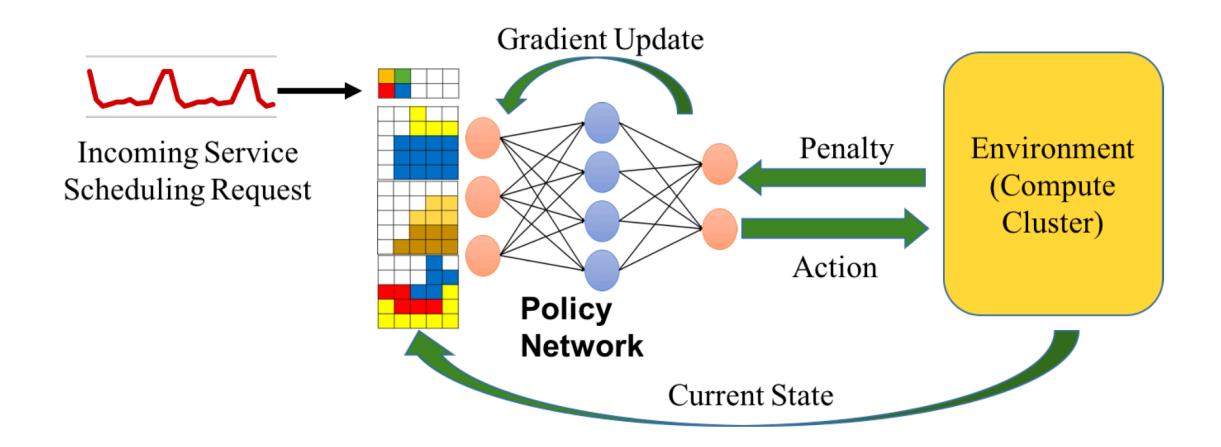
At a scheduling decision

- Analyze current state of all the machines State Representation (S_t)
- Decide on which machine to place the next application Action Space (A_t)
- Observe the benefits obtained from this decision Reward Function (R_t)
- Improve our decisions based on these observations Policy Network (π)

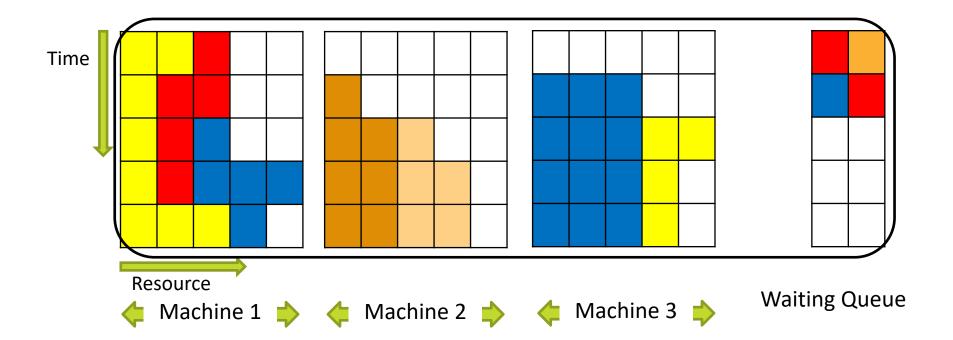


Leads to a natural map to a **Reinforcement Learning Problem**!

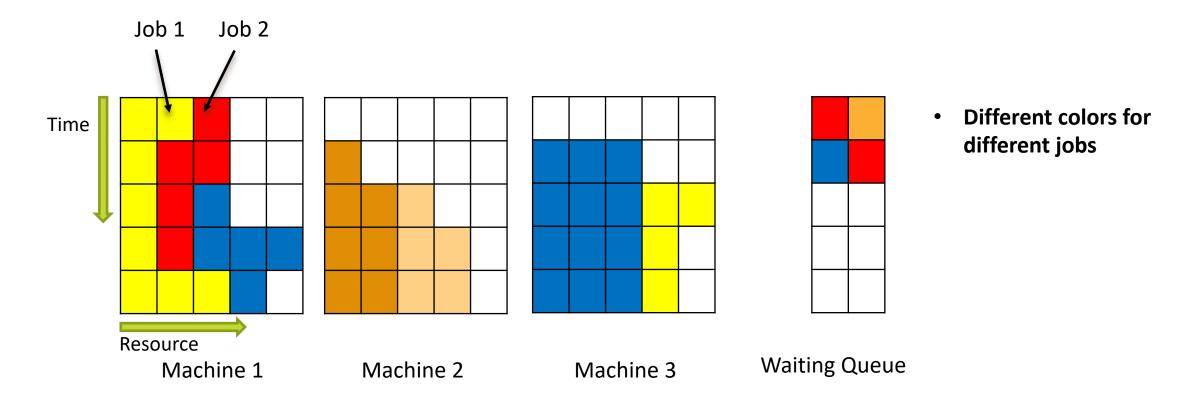
Solution – Workflow



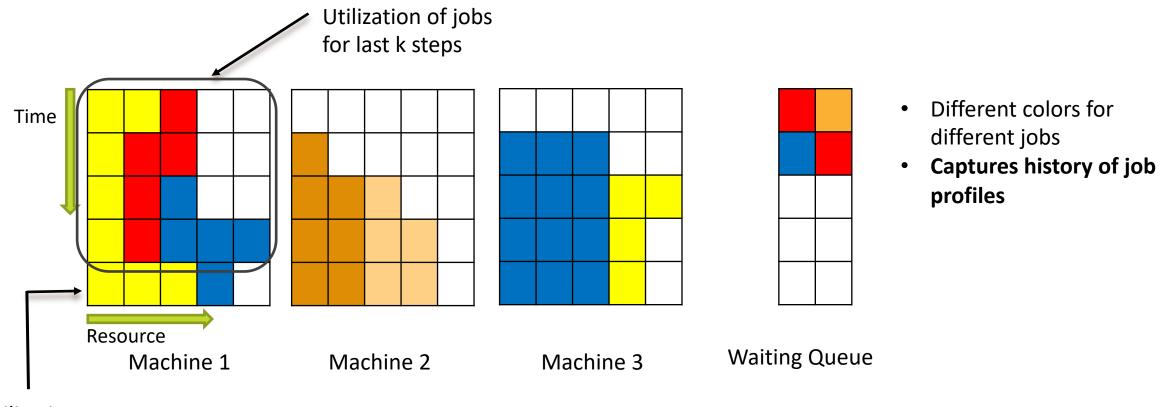
1. State Representation



1. State Representation (2)

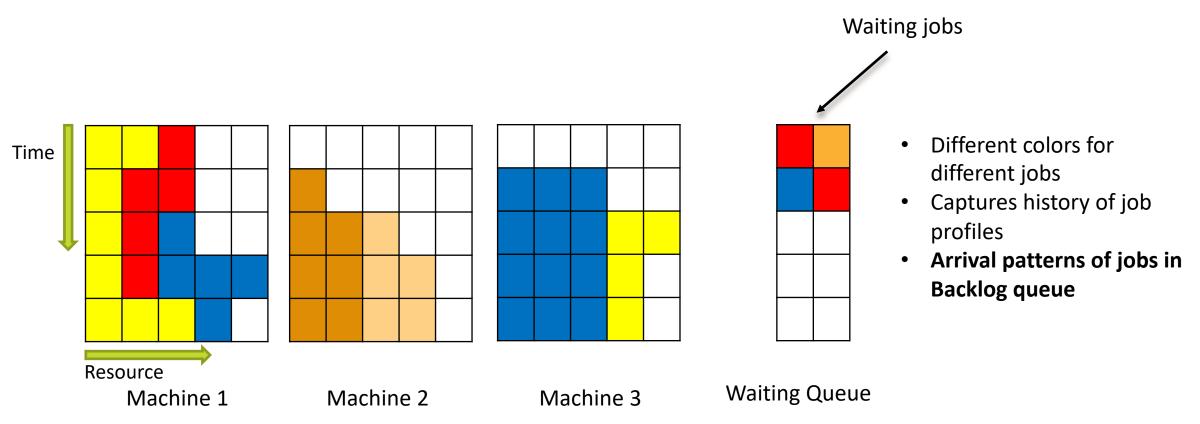


1. State Representation (3)

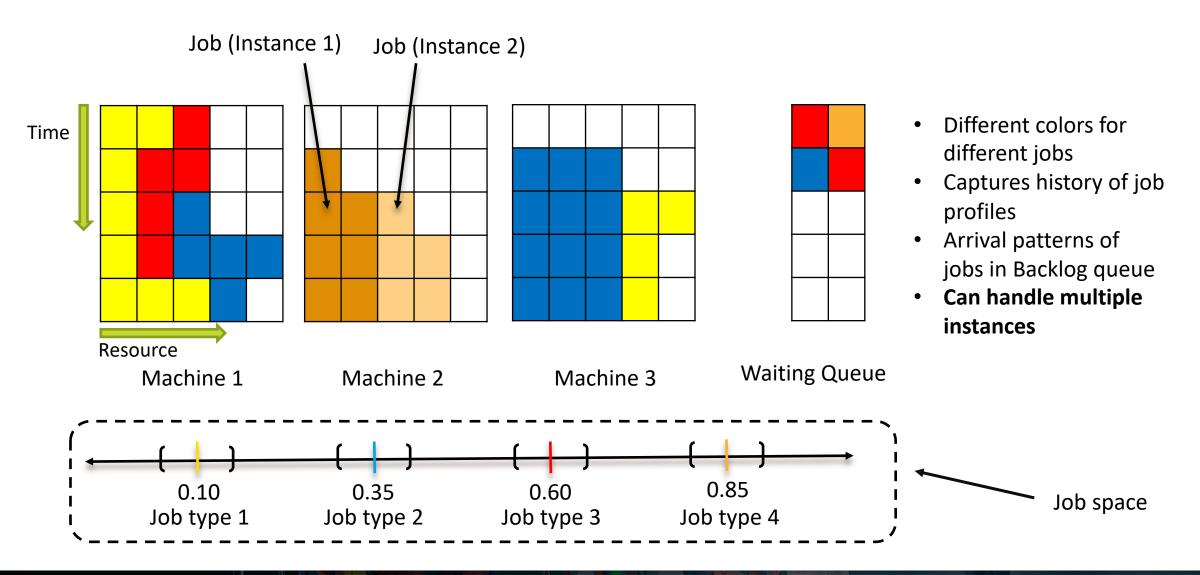


Utilization at current time

1. State Representation (4)



1. State Representation (5)



2. Action Space

- $A = \{0, 1, 2, ..., M\}$ i.e. $\{0 \cup \text{Set of machines}\}$
- A_t = 0 means choosing to not schedule the job.
 - Knowingly delay.
 - Probably better alignment later.
- At a given timestep, multiple actions can be taken.
 - On the set of jobs in the queue.

3. Reward Function - Art of Penalizing

- Resource Contention Penalty
 - Prevent resource contention among tasks scheduled in the same machine.
- Resource Over-Utilization Penalty
 - Prevent scheduling of more tasks than can be handled.
- Wait-Time Penalty
 - Prevent the scheduler from holding jobs for a long time.
- Under-Utilization Penalty
 - Improve overall utilization by achieving tighter packing.

$$Cr(i, j, d) = \sum_{t=0}^{\min(Ti,Tj)} res_usage(i, t, d) \times res_usage(j, t, d)$$

3. Reward Function - Art of Penalizing (2)

- Resource Contention Penalty
 - Prevent resource contention among tasks scheduled in the same machine.
- Resource Over-Utilization Penalty
 - Prevent scheduling of more tasks than can be handled.
- Wait-Time Penalty
 - Prevent the scheduler from holding jobs for a long time.
- Under-Utilization Penalty
 - Improve overall utilization by achieving tighter packing.

$$Cr(i, j, d) = \sum_{t=0}^{\min(Ti,Tj)} res_usage(i, t, d) \times res_usage(j, t, d)$$

$$P_{O} = -\sum_{m=1}^{M} K [Resources overshooted for m]$$

3. Reward Function - Art of Penalizing (3)

- Resource Contention Penalty
 - Prevent resource contention among tasks scheduled in the same machine.
- Resource Over-Utilization Penalty
 - Prevent scheduling of more tasks than can be handled.
- Wait-Time Penalty
 - Prevent the scheduler from holding jobs for a long time.
- Under-Utilization Penalty
 - Improve overall utilization by achieving tighter packing.

$$Cr(i, j, d) = \sum_{t=0}^{\min(Ti,Tj)} res_usage(i, t, d) \times res_usage(j, t, d)$$

$$P_0 = -\sum_{m=1}^{M} K [Resources overshooted for m]$$

 $P_w = -W * |Job Queue|$

3. Reward Function - Art of Penalizing (4)

- Resource Contention Penalty
 - Prevent resource contention among tasks scheduled in the same machine.
- Resource Over-Utilization Penalty
 - Prevent scheduling of more tasks than can be handled.
- Wait-Time Penalty
 - Prevent the scheduler from holding jobs for a long time.
- Under-Utilization Penalty
 - Improve overall utilization by achieving tighter packing.

$$Cr(i, j, d) = \sum_{t=0}^{\min(Ti,Tj)} res_usage(i, t, d) \times res_usage(j, t, d)$$

$$P_{O} = -\sum_{m=1}^{M} K [Resources overshooted for m]$$

$$P_W = -W * |Job Queue|$$

$$P_U = \sum_{m \in \text{used VMs}} \#(unused \ resources_j)$$

4. Policy Network

- A Deep Neural Network
- Output Probability distribution over Action Space.
- Learning REINFORCE Algorithm.
- Multiple workers on different examples to accumulate gradients.
 - One worker Combines the gradients.

Evaluations – Baselines

DeepRM – RL Agent

- Identifies job to be scheduled next.
- RL agent learns policy to optimize the defined reward.
- Treats cluster as monolithic.
- Doesn't specify where to schedule.
- Fair comparison not possible.
- [DeepRM HotNets'16]

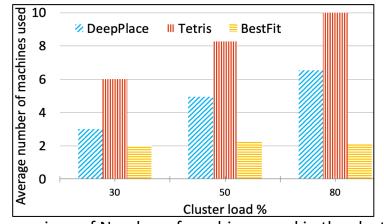
Tetris – Heuristic Based

- Schedules jobs on machines.
- How well resource requirement aligns with the machine's available resources.
- Adapts heuristics from multi-dimensional bin packing.
- [Tetris SIGCOMM'14]

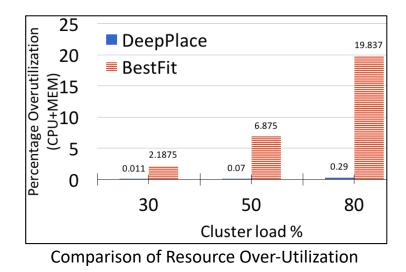
BestFit – Heuristic Based

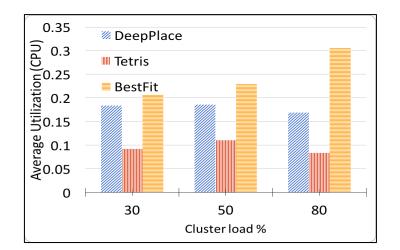
- Schedules jobs on machines.
- Chooses the machine which has the least units of the task's dominant resource available.
- Heuristic closest to packing.

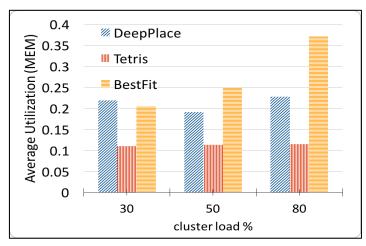
Evaluations – Scheduling Efficiency



Comparison of Number of machines used in the cluster



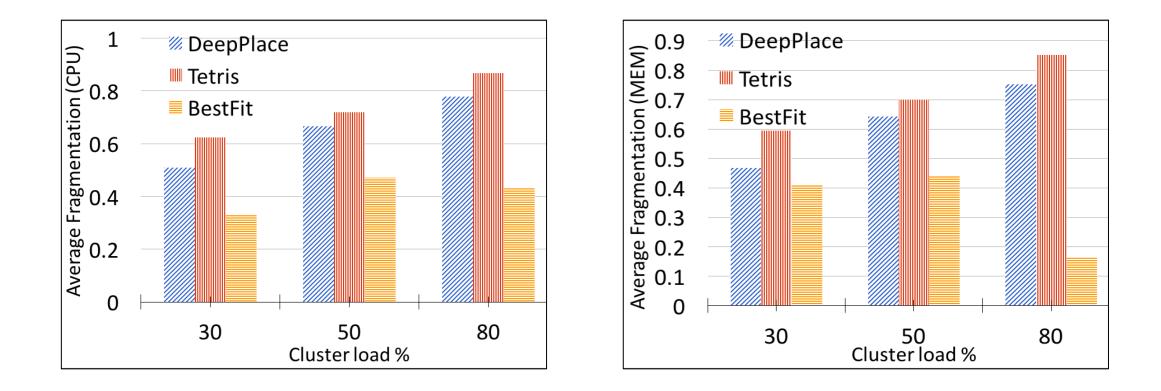




Comparison of Average Resource Utilization in the cluster (CPU and MEM)

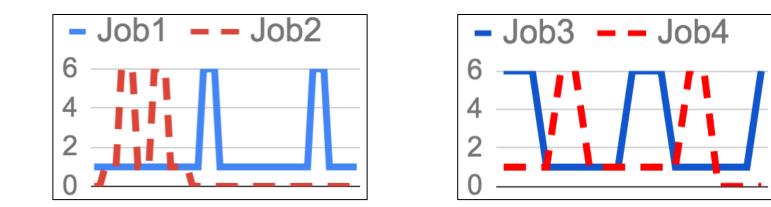
Evaluations – Fragmentation

• We define Average Fragmentation: Avg Frag =
$$1 - \sum_{t=0}^{T} \frac{\max(\text{available space across all machines at t})}{\text{Sum of available space over all machines at t}}$$



Discussions

- What It Learned?
 - Learned patterns among job's Resource Usages.
 - Ex: Job finishing before peak of other job.
 - Ex: Jobs' with alternating peaks.



Discussions - Deployments

- Scheduling Granularity for effectiveness.
 - Decision Process Frequent or not?
 - Job Length Allows for pattern discovery?
- Boot-strapping Learning.
 - Avoid learning from scratch.
 - Use replays of historical time-series.

Future Work

- Cluster Size Dependency.
 - Input space representation is function of cluster size.
 - Policy learning takes more time to train and converge.
- Evaluation on Real-Life Workloads.
 - Current experimentation on synthetic workloads.
 - Real-life workloads have noisier time-series.

Conclusion

- Current Multi-Tenant Clusters need to handle variety of services with different type of user expectations and characteristics at production.
- Not possible to design hand-crafted heuristics to orchestrate these services due to numerous latent factors.
- Our self-learning scheduler, DeepPlace, based on Reinforcement Learning shows promise and improvements than heuristics based approaches.

Thank You! Any Questions?

#AdobeRemix Hiroyuki-Mitsume Takahashi