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Abstract. Delivering effective, personalized user experience by online
platforms calls for individualized measure. Explicit measurement of expe-
rience, as mostly practiced, takes the form of satisfaction scores obtained
by asking questions to users. Obtaining response from every user is not
feasible, the responses are conditioned on the questions, and provide only
a snapshot, while experience is a journey. Instead, we measure experi-
ence values implicitly from users’ click actions (events), thereby mea-
suring for every user and for every event. The latent experience values
are obtained without-asking-questions, by combining a recurrent neural
network (RNN) with value elicitation from event-sequence. The platform
environment is modeled using an RNN, recognizing that a user’s sequence
of actions has a temporal dependence structure. We then propose elicit-
ing value of a user’s experience as a latent construct in this environment.
We offer two methods: one based on rules crafted from marketing and
consumer behavior theories, and another data-driven approach where we
apply fixed point iteration, similar to the approach used in model-based
reinforcement learning. Evaluation and comparison with baseline show
that experience values by themselves provide a good basis for predicting
conversion behavior, without feature engineering.

1 Introduction

Customer experience is a central function for firms and the new “battleground”
for competition [2]. Firms are emphasizing experience-measurement as an im-
perative to benchmark actions and enhance user experience (UX)[2]. Also, per-
sonalization of UX is pervading firms’ aspirations. All this calls for individual
level measurement of UX. Yet, there remains considerable reliance on explicit
measurement through surveys, which are prone to large non-response rates (the
gold standard ACSI reports upwards of 85 percent [1]), response biases, are retro-
spective in nature and utilized at an aggregate level. While implicit measurement
has been proposed in search satisfaction[19] to improve search, it has not been
embraced in customer experience domains. Notably, experience is distinct from
satisfaction. The latter is an outcome while experience is a journey[13]. In ad-
dressing these gaps between needs and current offerings we propose methods for
computing UX values, that captures the process of experience as a journey.
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The term UX covers experiences derived from any usage scenarios such as
using knowledge software, or, using website / app for eCommerce, and includes
customer experience. Experience is latent in the mind of users and difficult to
measure [13]. By asking users explicitly about their experiences, surveys suppos-
edly avoid this difficulty. But, very few respond to surveys, responses are condi-
tioned on questions asked and provide only a snapshot. Instead, using clickstream
logs that reflect actual behavior we measure the latent user experience. We offer
two methods, each with two steps. In step one, both simulate an off-line learned
model of the environment. In step two, which computes UX values, they differ;
whereas one method crafts rules using consumer psychology, the other uses value
iteration by drawing from reinforcement learning. We rely on an RNN with long
short-term memory (LSTM) [7] units for modeling the environment. This allows
us to use the multidimensional and continuous historical information encoded in
the LSTM cell along with the current event to characterize states. Our approach
is consistent with experience being a customer journey.

We benefit from multiple streams of literature. Theory of consumer psychol-
ogy examines the construct experience and its relation to satisfaction[13], and
grounds our concept for measuring UX. Research in CS on implicit measurement
of search satisfaction from clickstream data[19] supports our thesis, although
both in substantive problem definition and methodology, we deviate from this
research as discussed later. Across disciplines clickstream data are analyzed to
gain insights into user behaviors by utilizing hidden Markov models (HMM)
and RNN, but none examines the measurement of UX. Toward measurement of
latent UX our contributions are:

1. Introducing formulations and rules based on consumer behavior theories to-
ward computing UX values. Moreover, combining these rules with modeling
dynamics of an on-line platform using an LSTM network.

2. Additionally, introducing a data-driven method without pre-defined rules,
where we define experience in terms of the value of different events which
elicit delayed rewards. This flexible framework allows generalizability across
domains. Specifically, measuring the value of interaction sequences is new.

3. A novel application of state value iteration method, commonly used for solv-
ing Markov Decision Processes and in Reinforcement Learning, to the domain
of click-stream data analysis.

4. Representation of partially observable states in the journey of user as the
memory cell of an RNN pre-trained to predict next event.

Note that we exclude features available in clickstream data such as types of
product, page content, etc. By relying only on click action sequences to measure
UX values, our method has less dependence on feature engineering.

2 Related Work and Defining Experience Value

Drawing from the rich customer experience literature in Marketing and Con-
sumer Psychology, [13] points out ”what people really desire are not products but
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satisfying experiences”. Customer experience is a process, or, a journey over time
[13], which comprises three phases - pre-purchase, during, and post-purchase.
Measuring UX over the whole journey could be of interest[13]. UX comprises
a ”customer’s behavioral, emotional, cognitive, and social responses to a firm’s
offerings ([13], pp. 71).” Thus, UX is a latent construct, in the mind of the user.
Explicit measurement of UX by asking questions may capture stated experience
on some aspects (e.g. emotion), but fails to capture actual actions. Our premise
is that click action sequences observed in usage logs are crucial clues about re-
vealed experience. Values of the latent construct UX can be computed for each
phase based on phase-specific clickstream action sequence data. Considering the
during-phase, footprints on a website or on a mobile app include click actions of
filter, add to cart, for ecommerce; or, tasks performed during in-product usage of
knowledge software. The actions are observed, but experiences are unobserved.
By modeling these action sequences we assign values to latent experience, which
drives actions observed in data.

We define experience as the value of being in a certain state of the envi-
ronment in terms of proximity to a goal state. Consumer behavior literature
highlights goal-orientation in online behavior and how goal-directed activities
can achieve compelling experiences [17]. For the use case of e-Commerce, Pur-
chase is an indicator of experience and consistent with goal attainment. Hence,
we treat states in which Purchase event takes place as goal states. With a goal of
making purchase, users go through several events on a site and incur transaction
costs in search, time and psychological costs, which increase with efforts [15].
The events can be sequenced with respect to a goal; e.g., a sequence (brows-
ing, deliberate search, add to cart, purchase). Moving forward from one stage
to another in the sequence brings users closer to the goal and goal-gradient de-
creases [10], improving UX and encouraging behavior toward goal completion.
Moreover, the process of purchase decision making itself contributes to experi-
ence [6]. From [16] we know the higher order event of directed-buying sessions
has the highest conversion rate (12.94%), followed by the lower order stage of
search sessions (8.02%).

The search literature in CS studies implicit measurement of satisfaction in
order to improve search outcomes and finds that implicit measurement correlates
with explicit, question based measures of satisfaction [8, 19]. This provides sup-
port for our thesis. Deviating from metrics such as dwell time, search results click,
[19] offers a latent structural learning model of search satisfaction, which recog-
nizes action level dependencies and uses rich structured features. Other efforts
examine struggling in search to obtain relevant information [18]. The problem
we study is about decision making (e.g., whether to purchase) based on online
platform interactions and sets our work apart from that of search which is about
obtaining relevant information. Typically, a poor search has less consequences for
a user than a poor purchase, making the goal orientation stronger in our context
of browsing experience. In browsing there is a hierarchical structure imposed
by the site, whereas in search a poor result leads to user formulating another
query which may not have a hierarchical basis. Finally, our model does not rely
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on features unlike these papers in search. Clickstream mining for measuring UX
has been used to provide visualizations of common paths for site visitors [14]
and to infer personas of users [22], but none suggests a method to extricate UX
metrics from user logs, which we do.

We draw upon the literature in use of RNN to understand consumer behavior
from clickstream data. Usefulness of RNN to link individual click actions to pre-
dictions is shown in [12]. For improved purchase prediction [11] depict the benefit
of using sequential input of tweets for RNN. A manifestation of RNN [23] is in
predicting sequential clicks for sponsored search. None of these papers investi-
gates experience, which is a continuous evolution from sequential behaviors [13].
Traditionally, HMMs are used to model latent states for obtaining insights into
user behaviors [3, 20, 4]. Our RNN model of the environment is Markovian, but
in histories of states [21] as described later. The multidimensional and continu-
ous historical information encoded in the LSTM cell is a major departure from
the finite, discrete values for HMM. Previous application of Markov Chain model
to clickstream includes mapping of journals based on logs available in scholarly
portal [5], but does not include decision-making which we do. In the class of
sequential data modeling techniques we have not seen in the literature any ex-
isting method that specifically measures the value of an interaction sequence. In
this regard, our data-driven approach of using value-iteration has been derived
from classical literature in reinforcement learning and decision theory.

3 Framework

We model the browsing behavior of on-line users of an eCommerce Website as
a first-order Markov process. Consider a state space, S = {s1, s2, s3, ...} and a
reward function r : S → R. At time t, a user in state St ∈ S receives a reward
r(St). The transition probability function is P(si, sj) = Pr(St+1 = sj |St = si).
Let the sequence of events observed in a user’s browsing journey till time t
be E1, E2, ..., Et where Ei ∈ E = {e1, e2, ..., e|E|}. Events can be actions or
sets of actions. Let a vector Ht−1 of d dimensions encode all the historical
information from the sequence E1, E2, ..., Et−1. Then, the state at t is represented
as a tuple, St = (Ht−1, Et). Consider the encoding function, g : S → Rd such
that, H0 = 0 and Ht = g(Ht−1, Et). Also, let us define the operator ⊕ such
that,

St ⊕ Et+1 = St+1

(Ht−1, Et)⊕ Et+1 = (Ht, Et+1)

(Ht−1, Et)⊕ Et+1 = (g(Ht−1, Et), Et+1)

(1)

4 Learning Experience Values

We first build a model to simulate the dynamics of the environment and then
apply two alternative methods for exploiting the learned model to extract latent
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experience values. The first method is based on predefined rules that experience
values must satisfy. The second method is based on value-iteration, is data-driven
and autonomous.

The environment is simulated using an RNN trained to predict the next event
in the customer journey. The network encodes the information from the historical
sequence of events in its d dimensional cell state. The gates of the LSTM unit of
the RNN model the history encoding function g introduced above. The network
estimates the transition probability function (P̂ =̂ P) of the underlying Markov
process of the environment. For every input sequence of events, a one step ahead
sequence is predicted. The architecture of the model is as follows:

– Input Layer: The data are input in the form of sequences of events.
– Embedding Layer: The categorical variable, i.e. the event is then embed-

ded into a latent space of dimension 150.
– LSTM Layer: The input is then fed into an LSTM layer with 200 hidden

dimensions. The LSTM layer acts as the memory unit of the model. The
hidden state of the LSTM is carried over as input to the future timestep,
thus allowing the model to encode historical information.

– Fully Connected Output Layer: The output from the LSTM layer goes to
a fully connected dense layer which produces the output of size |E| through
softmax activation at each time-step of the sequence. The output at each
time-step is a probability distribution vector over all possible next events.

The model is trained to minimize the categorical cross-entropy loss using Adam [9]
optimization algorithm.

4.1 Rule-based method

For this first method we formalize the concepts of event base values (B) and
event transition importance (TI). Then we outline intuitive rules that experience
values ought to satisfy. While these rules are crafted from domain knowledge,
some companies may prefer to impose own rules which conform to their specific
situation. Later we show how the values B and TI along with the next event
prediction model are used to compute final experience values (XV ) at each state.

Drawing upon consumer behavior theories, a base value B(e), is assigned to
every event e, in the order of progression toward the goal task (Purchase, in
this case). For example, a user who has added a product to cart is closer to
completing the purchase-goal task than someone exploring products. Thus, we
assign higher base value to the Add to cart event than the Browsing event.

An importance value, TI(ei, ej) is assigned to a transition from any event ei
to another event ej . This importance value captures how discriminative a transi-
tion is across purchase and non-purchase journeys. In other words, if a transition
occurs equally frequently in both purchase as well as non-purchase journeys, then
it is less important than a transition whose frequencies are unequal. Intuitively
for example, transition from Hedonic Browsing to Directed Search is less impor-
tant than that from Directed Search to Add to Cart, since the former likely occurs
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about as frequently in purchase and non-purchase journeys, while the latter oc-
curs more frequently in purchase journey but less frequently in non-purchase
journey. More formally, let

p =

K∑
k=1

τ∑
t=1

(Ekt = ei)∧(Ekt+1 = ej) ∧ (Ekτ = Purchase)

np =

K∑
k=1

τ∑
t=1

(Ekt = ei)∧(Ekt+1 = ej) ∧ (Ekτ 6= Purchase)

Then, TI(ei, ej) =
|p− np|
p+ np

(2)

where, K is the number of event sequences and τ is the length of each sequence.
Let St = (Ht−1, ei) and St+1 = (Ht, ej). The following rules characterize a

desired property of experience value XV (St):

if XV (St) ≥ B(ei) then E(B(ej)) ≥ B(ei) and

if XV (St) < B(ei) then E(B(ej)) < B(ei)
(3)

These rules imply that a user who is having a better experience than that in-
dicated by the base value of the current event, is expected to transition to an
event with higher base value and vice-versa. The objective is to find experience
values that minimize the number of rules violated for a journey.

We propose alternative formulations for computing XV (St). Later, we pro-
vide intuition for these formulations.

∆Bi,j = ωjP̂(St, St ⊕ ej)(B(ej)−B(ei)) (4)

Formulation 1: XV (St) = ω0B(ei) +

|E|∑
j=1

∆Bij

Formulation 2: XV (St) = ω0B(ei) +

|E|∑
j=1

TI(ei, ej)∆Bij

Formulation 3: XV (St) = ω0B(ei) + Tz(St)

|E|∑
j=1

TI(ei, ej)∆Bij

where, Tz(St) =
T (St)−mean(T (ei))

std(T (ei))

(5)

where, W = {ω0, ω1, ..., ω|E|} is a set of unknown parameters and T (.) is the
time spent in a state or event. To examine each of the proposed formulations
in a simple manner, consider the special case when ωi = 1 ∀i. In Formulation
1, XV is defined as weighted sum of the current base value and the expected
change in base values from current to next time step (equivalently, the expected
base value of the next event). In Formulation 2, the importance of the transition
to next event is also taken into account. Formulation 3 builds upon Formulation
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2 through the incremental inclusion of the effect of normalized time spent in the
current state (Tz(St)). This recognizes that time spent may impact experience.
We estimate the optimal value for W by linear regression with the loss function
as follows

ŷt = σ(XV (St)−B(ei)) and yt = σ(B(ej)−B(ei))

LW =

K∑
k=1

τ∑
t=1

(ŷkt − ykt )2
(6)

where, K is the number of event sequences, τ is the length of each sequence
and σ is a Sigmoid function with a high slope to simulate a unit step function.
This is an implementation of number of rules violated in a differentiable form to
facilitate gradient descent based parameter estimation.

4.2 Value iteration method

Our second method overcomes the deficiencies of hand-crafted rules which may
not generalize to all domains. Herein, we need to use very little domain knowledge
in the form of a reward function, r as follows

r(St) =

{
1, if Et = Purchase

−ε, otherwise
(7)

where, −ε is a small penalty. Now, consider a user traversing the state space of
the environment and assimilating rewards along the way according to the above
reward function. She achieves high reward in Purchase event and a small penalty
(ε) everywhere else. We can now define the experience value of any state, St as
the total expected discounted reward after t.

XV (St) = E(r(St+1) + γr(St+2) + γ2r(St+3) + ...) (8)

where, γ ∈ (0, 1) is the discounting factor. The above expression can be written
in the form of a Bellman Equation as follows

XV (St) = E(r(St+1) + γXV (St+1))

XV (St) =

|E|∑
i=1

P̂(St, St ⊕ ei)(r(St+1) + γXV (St+1))
(9)

Since the state space is very large (all possible sequences of events), it is
not feasible to get exact solution to this equation through methods such as
dynamic programming or linear regression. To deal with this problem, we rely on
a function approximation method. We define a simple linear estimation function
fθ with a set of parameters θ, to model the experience values.

fθ(St) = X̂V (St) =̂ XV (St) (10)
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We use the fixed-point iteration method to find θ. Start with random initial
values, θ0. At iteration number n, experience values for all observed states in
the training data are estimated using θn−1. Based on these estimates, expected
values, XV n are calculated using the Bellman Equation.

XV n(St) =

|E|∑
i=1

P̂(St, St ⊕ ei)(r(St+1) + γ ˆXV n−1(St+1)) (11)

The mean square error, Lnθ between expected (XV n(St)) and estimated ( ˆXV n(St) =
fθ(St)) values is used to update θ with gradient descent method until conver-
gence. For a training dataset with K sequences with τ time-steps each,

Lnθ =

K∑
k=1

τ∑
t=1

(fθ(S
k
t )−XV n(Skt ))2

θn = θn−1 + α
dLnθ
dθ

(12)

Fig. 1: Illustration of rule based (left) and value iteration (right) method

Category Actions

Hedonic
browsing (c1)

Search, Search Filters,
Product Details,

Product Categories

Deliberate
Search (c2)

Reading Reviews,
Product Comparison

Add to Cart
(c3)

Add to Cart, Add to
List

Purchase (c4)
Checkout, Payment,

Place Order

Table 1: Actions corresponding
to each category

No Pur.
/ Pur.

c1 c2 c3 c4

c1 -
7153 /
2331

4075 /
8236

1694 /
4058

c2
6626 /
2177

-
177 /
324

197 /
500

c3
2302 /
3850

113 /
113

-
1903 /
5241

c4
3375 /
4664

261 /
410

207 /
567

-

Table 2: Category level transition
frequency for sequences (Read from

category in row to category in column)
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Precision Recall F1
0

0.2
0.4
0.6

0.75 0.71 0.73

0.53
0.45 0.490.45 0.49 0.47

0.58 0.57 0.58

Hedonic Browsing Directed Search Add to Cart Purchase

Fig. 2: Results for the next category prediction model

Method Accuracy (%) Precision Recall F1-Score AUC

Category Sequences 66.52 0.63 0.75 0.69 0.67

Rule-based Form. 1 (W = 1) 66.64 0.69 0.65 0.67 0.66

Rule-based Form. 2 (W = 1) 66.48 0.71 0.64 0.67 0.66

Rule-based Form. 3 (W = 1) 66.64 0.73 0.64 0.68 0.67

Rule-based Form. 1 (optimal W ) 66.76 0.58 0.69 0.63 0.67

Value iteration 63.16 0.82 0.59 0.69 0.65

Table 3: Evaluation with purchase prediction

5 Experimentation

Click-stream data from an e-Commerce site, spanning a period of three months,
are used. After cleaning the data only click actions corresponding to the Appli-
ances category are retained. All click actions, for each user, are stitched together
chronologically into a sequence of click actions. Altogether 31 relevant click ac-
tions such as View product details, Apply search filter and Add to cart. are identi-
fied from the data. The set of unique actions is denoted A = {a1, a2, ..., a31}. As
reasoned earlier, inspired by [16], click actions are categorized into a set of four
categories i.e. Hedonic Browsing, Directed Search, Add to Cart and Purchase.
Each category characterizes a different stage in a user’s journey towards the goal
state of purchase. The set of categories is denoted C = {c1, c2, ..., c4}. Categories
and corresponding sample click actions are shown in Table 1. The algorithm for
finding experience values is applied at category level, i.e. set of events E refer to
the set of categories, C. The final data are sets of sequences of events. In Table 2
we show the frequencies of transition among categories when journeys end in no
purchase vs. end in purchase. Finally, the data are randomly split into two sets,
training and testing, with a total of 12800 and 4600 sequences, respectively.

6 Results and Discussion

We have no access to survey based experience measurement scores of users whose
usage logs we model. Firms do not share such scores. This obstacle of survey and
the current use case of goal fulfillment toward purchase guide our evaluation. We
compute a UX value for each user, for each event from usage log and then based
solely on UX values predict the goal fulfillment (purchase), under the thesis that
UX affects goal fulfillment. Purchase prediction is not the focus, but merely
a way of evaluating the worth of derived UX values. We show that using UX
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Fig. 3: Evolution of experience during journeys

values can give purchase prediction comparable to that of feature-engineered
model. As exemplar of the latter, within the data we have, category (event)
sequence based model is comprehensive since it captures the sequence along
with frequency of sub-events and time spent on events and forms the baseline.
True to our objectives, the methods are to be judged by how closely the accuracy
of feature-based model can be reproduced by our methods.

A multi-layer RNN module performs purchase prediction by taking as input
either sequence of events or experience values generated from one of the proposed
methods. Prediction accuracies of models with fixed architecture and different
inputs is then compared. The model architecture is similar to next event predic-
tion model, with a difference in the final layer which produces a single output
(purchase probability) per time-step through sigmoid activation. The training is
done to minimize binary cross-entropy loss.

We evaluate both environment simulation and UX value generation models.
Results for the former for next event prediction on test data are shown in Fig. 2.
These measures are obtained by averaging across categories from which arrival
into a category can occur. We find some variability in these measures across
the categories. Results for UX value generation are shown (in Table 3) for four
variations of UX value computation using the rule based method - Formulations
1-3 (AUC = 0.66, 0.66 and 0.67 respectively) and one with parameter tuning
for Formulation 1 (AUC = 0.67). The results from the value iteration method
(AUC = 0.65) are also compared. For each of these, purchase prediction is carried
out by using the generated UX values as the only input. The baseline used is
an event-sequence based prediction. We find that although the UX values are
extracted based on rules, their performance in predicting purchase is very close
to the baseline (AUC = 0.67), which uses features such as frequency of actions
and time spent within each category. This suggests that computed experience
values capture latent components of browsing experience, which explain purchase
propensity as accurately as using information in raw data.

Fig. 3 depicts UX values (red), as users move through states (green), for three
users. Note the red UX values are leading indicators. E.g., from state 1 to state 2
if UX value decreases, it is expected the user moves from the stage in state 2 to a
lower stage in state 3. For red lines, last segments are not interpretable. The left
figure shows an upward drift consistent with higher stage attainment, and early
sign of UX leading to higher stage. The leading indicator between states 2 and
3 suggests movement from stage 1 to stage 4 going from state 3 to state 4. The
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middle figure shows a user oscillates between stages 1 and 2 over states, without
ever going to a higher stage. The overall downward drift is an early indicator of
poor experience and no purchase. The right figure is less informative since the
slightly upward tendency is not consistent with stage traversal.

7 Conclusion

We show that UX values can be uncovered from readily available user behavior
logs. Drawing from theory we grouped actions into categories to build the model.
An alternative thought could be to build a model directly from the raw actions.
The action-level model using value iteration shows that for the task of purchase
prediction we obtain accuracy (0.67), precision (0.87), recall (0.67), F1 (0.75)
and AUC (0.57). Comparing with stage-level results from the last line of Table
3 we find that in AUC, the stage level model performs better.

Rules based method may fit customers who ’live’ click to click or are myopic,
while value iteration captures long-view customers’ behaviors. Several challenges
include how to do a direct evaluation based on experience metrics obtained in
a direct way. Limitations also pertain to the generalizability of the approach to
non-discretionary and low involvement products. The appliance category used
here constitutes discretionary spending and a high ticket purchase engendering
extensive browsing behaviors. Our use case is for the during phase of the whole
customer journey. With data from the pre and post phases, future work can
extend the approach to mine UX values for those phases. It is noted that our
approach can ingest any goal, not just purchase. For example, information seek-
ing. As well, other rewards and intermediate rewards can be provided. None of
these applies in a purchase prediction model.
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