
Decentralized Storage Network with Smart
Contract Incentivisation

PROJECT REPORT
submitted towards the partial fulfillment of

the requirements for the award of the degree of

BACHELOR OF TECHNOLOGY
in

COMPUTER SCIENCE AND ENGINEERING

Submitted by

Anshul Shah
Nikhil Sheoran

Suraj Gupta

Under the guidance of :

Dr. Manoj Mishra and Dr. Sugata Gangopadhyay

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, ROORKEE

ROORKEE- 247667 (INDIA)

April, 2018

i

Candidate’s Declaration

We declare that the work presented in this project report with the title “Decentralized
Storage Network with Smart Contract Incentivisation" towards the fulfillment of the
requirement for the award of the degree of Bachelor of Technology in Computer Sci-
ence & Engineering submitted in the Dept. of Computer Science & Engineering,
Indian Institute of Technology, Roorkee, India is an authentic record of our own
work carried out during the period from August 2017 to April 2018 under the super-
vision of Dr. Manoj Mishra, Professor, Dept. of CSE, IIT Roorkee and Dr. Sugata
Gangopadhyay, Associate Professor, Dept. of CSE, IIT Roorkee.

The content of this report has not been submitted by us for the award of any other
degree of this or any other institute.

DATE : SIGNED : ..

PLACE : ANSHUL SHAH (EN. NO: 14114013)

DATE : SIGNED : ..

PLACE : NIKHIL SHEORAN (EN. NO: 14114031)

DATE : SIGNED : ..

PLACE : SURAJ GUPTA (EN. NO: 14114065)

ii

Certificate

This is to certify that the statement made by the candidate is correct to the best of my
knowledge and belief.

DATE : SIGNED : ..
Manoj Mishra

Professor
Dept. of CSE, IIT Roorkee

iii

Certificate

This is to certify that the statement made by the candidate is correct to the best of my
knowledge and belief.

DATE : SIGNATURE : ..
(DR. MANOJ MISHRA)

PROFESSOR

DEPT. OF CSE, IIT ROORKEE

DATE : SIGNATURE : ..
(DR. SUGATA GANGOPADHYAY)

ASSOCIATE PROFESSOR

DEPT. OF CSE, IIT ROORKEE

iv

Acknowledgements

First and foremost, we would like to express our sincere gratitude towards our guides
Dr. Manoj Mishra, Professor, Dept. of Computer Science and Engineering, IIT Roor-
kee and Dr. Sugata Gangopadhyay, Associate Professor, Dept. of Computer Sci-
ence and Engineering, IIT Roorkee for their ideal guidance throughout the period.
Their advices, insightful discussions and constructive criticisms certainly enhanced
our knowledge and improved our skills. Their constant encouragement, support and
motivation have always been key sources of strength for us to overcome all the diffi-
cult and struggling phases.
We would also like to thank Department of Computer Science and Engineering, IIT
Roorkee for providing lab and other resources for this project, as well as for being a
perfect catalyst to our growth and education over these past four years.
We also extend our gratitude to all our friends, for keeping us motivated and provid-
ing us with valuable insights through various interesting discussions.

v

Abstract

In our project, we present our work upon peer to peer data replication system. This
system is set apart from conventional cloud storage solutions by effectively utilizing
the public contract systems readily available through the use of blockchain technol-
ogy. Centralized Storage networks suffer from a major drawback of the factor of
trust on a central authority and the concerns of privacy. We propose a novel archi-
tecture which utilizes latest developments in the cryptographic primitives and the
blockchain technology to structure a Decentralized Storage Networks. In this case,
the nodes provide their active free storage in exchange of the incentive in form of
cryptographic currency, thus creating a self-sustaining storage network that can be
used by others. We will discuss various protocols for creating this system and ana-
lyze various scenarios possible on the system.

vi

Contents

Candidate’s Declaration i

Certificate ii

Acknowledgements iv

Abstract v

List of Figures viii

1 Introduction 1
1.1 Elementary Components . 1
1.2 Architecture Overview . 2
1.3 Desired Properties . 3

2 Related Work 4
2.1 Peer to Peer Systems . 4
2.2 Blockchain Systems . 5
2.3 Decentralization of Storage . 5

3 Methodology 7
3.1 Registering New Providers . 7

3.1.1 Procedure . 7
3.1.2 Desired Properties . 8
3.1.3 Memory-Hard Puzzles . 8

3.2 Data Storage . 9
3.2.1 Node Discovery . 9
3.2.2 Creation of Storage Agreement 9

3.3 Data Verification and Retrieval . 10
3.3.1 Procedure . 11
3.3.2 Desired Properties . 11
3.3.3 Proof of Storage Mechanism . 11

Notation . 11

vii

Setup Phase . 12
Verification phase . 12

4 Implementation 13
4.1 Tools and Technologies Used . 14
4.2 Implementation of Contracts . 14

5 Analysis 15
5.1 Malicious Provider Scenarios . 15

5.1.1 Provider drops the data . 15
5.1.2 Sybil Attack . 15

5.2 Malicious Client Scenarios . 16
5.2.1 Client evades the system without verifications 16
5.2.2 Client repeatedly requests the data 16

6 Conclusion 17
6.1 Comparison with traditional storage systems 17
6.2 Future Work . 17

Bibliography 19

viii

List of Figures

1.1 Decentralized Storage Network Architecture 2

2.1 Blockchain with Blocks and Transactions 5

3.1 GGM Hash Tree for Hash values computation 8
3.2 Flow Chart for the Storage Agreement 10

4.1 Use Case Diagram for the Storage Agreement 13
4.2 Class Diagram for the Contract . 14

ix

We dedicate our work to Computer Science and
Engineering Department, our families and friends.

1

Chapter 1

Introduction

Recent technological developments in the field of blockchain technology have forced
us to challenge our view of thinking internet as a bunch of concentrated centralized
service providers. Various blockchain networks have proven the importance of the
decentralized transaction ledgers. These decentralized networks are providing plat-
form for building useful services without any central management or trusted parties.
The applications of blockchain are bringing significant efficiency to financial transac-
tions, supply chain systems and social networking among others [4].

In our work, we try to leverage the blockchain technology in the field of storage
networks. We provide a technology which enables any computer system with free
storage to participate in a decentralized storage network. The provider will get the
incentive in the form of crypto currency on lending this storage. On the other hand,
any client requiring free storage can get it from the system. All the information of
available free storage with each provider and the information about each storage con-
tract created between a client and a provider is stored on a decentralized ledger. In
this way, we are able to create a self-sustaining storage network with minimal central
authority.

1.1 Elementary Components

• Client - These are the nodes that come up on the system to get storage capacity.
They store their data and pay for the services provided in the form of cryptocur-
rency.

• Provider - These are the nodes that have free storage capacity. They lend their
storage capacity and earn incentive for this in form of cryptocurrency.

• Oracle - A system that provides the storage tokens to new providers on verifi-
cation. Verification is done using ‘Proof of Space’ challenges.

Chapter 1. Introduction 2

• Storage Token - Protocol tokens that maintain the information about the current
free storage of any provider. They are issued to a new provider after verification
of the storage space by the oracle.

• Storage Agreement - When a client stores it data, the selected Provider node’s
storage tokens are bound in a smart contract.

• Virtual Currency - The cryptocurrency maintained on the blockchain. This used
to transfer funds from client to provider for providing storage.

1.2 Architecture Overview

FIGURE 1.1: Decentralized Storage Network Architecture

• Whenever any new provider comes up on the system, it registers itself to the
oracle by solving the relevant challenges proving the availability of free storage.
On registration, the provider is given the storage tokens.

• When a client joins the system with some data to be stored, a storage request
is created and on acceptance by the provider, storage agreement is created be-
tween the provider and client and the data is transferred to the provider.

• Now, the client node can repeatedly verify the data and reinforce the agreement
after a fixed duration of time. On successful verification, the payment is made
to the provider node.

Chapter 1. Introduction 3

• The termination of storage agreement can either be client initiated or provider
initiated. In case it is initiated by client, the data is sent to the client and storage
agreement gets terminated. In case it is initiated by the provider, the agreement
is updated to reflect a new available provider, automatically identified by the
system. In both the cases, the storage tokens are returned to the provider.

1.3 Desired Properties

• The data transaction happens on a peer to peer basis between the clients and
the providers. This is unlike the concept used in Permacoin, which replicates
the desired file in the blockchain of all the participant nodes [2]. The individual
providers may have a dynamic pricing depending on their storage supply and
client demand. The client software then selects the most suitable provider based
on their pricing.

• Node Induction: For any node to join the network, it needs an initial peer.
Using various peer discovery methods, the new node could communicate with
other peers on the network.

• Oracle: To prevent overload, a central Oracle needs to operate at minimum cost
in terms computation cost and blockchain transaction costs. The oracle plays no
role in the P2P transactions which occurs between any two nodes. The oracle
publishes the smart contract on the blockchain and being the owner has the sole
authority to issue the storage tokens to providers.

• For the system to be self-sustaining, there needs to be a trust system which
needs to be developed between the clients and providers. This system can be
produced with the help of the blockchain technology. A smart contract de-
ployed on the blockchain maintains an incentive layer by ensuring the account-
ing tasks are performed without any threat from attackers. The blockchain pro-
vides an append only ledger with consensus among nodes to uphold the trust
and mitigate adversarial threats.

4

Chapter 2

Related Work

Data storage has always been a radically evolving field related to Computer Science
starting from the magnetic discs to the today’s Cloud storage networks. Today, there
are various SaaS(Storage as a Service) platforms like Google Cloud, Microsoft Azure,
Dropbox, etc. are present. They provide the advantage of reduced infrastructure
costs, flexibility of usage, negligible maintenance and ease of scalability. However,
they have some of their issues in the form of lack of control, and privacy concerns.
[1] provides a comprehensive study of the advantages and drawbacks of the vari-
ous cloud storage techniques used conventionally. In our work, we try to use the
existing concepts of the cloud storage but trying to make it decentralized utilising the
blockchain technology.

2.1 Peer to Peer Systems

Decentralisation of storage network is pivoted in the concept of peer to peer inter-
actions of autonomous nodes in a network. The basic requirements for creating this
nature of system are the underlying communication protocols which handles infor-
mation exchange between the nodes. For efficient communication, our system needs
a virtual overlay network as implemented in a DHT. It ensures that the node can eas-
ily query for a piece of information/resource in the network, even if the resource is
rare [6]. Use of DHT enables the nodes to store a set (key, value) pairs on the network,
and any node can later retrieve the value associated with the key. The properties of
fault tolerance, decentralization and scalability can be achieved by implementations
of DHT algorithms like Kademlia, Chord and Pastry.

Chapter 2. Related Work 5

2.2 Blockchain Systems

The Bitcoin white paper of 2008 has led to the conceptualization of the blockchain.
This introduction of the concept and technical challenges is attributed to anonymous
person or group known as Satoshi Nakamoto. The biggest engineering problem
which was solved by the currency was the double spending problem outdoing the
necessity of a central authority or institution [9]. The solution was a publicly visible
append-only ledger comprising of financial transactions. The ledger was enforced
security by cryptographic computational proofs which guarantee safety until the ma-
jority of the participating nodes go rogue.

FIGURE 2.1: Blockchain with Blocks and Transactions

In the next phase of evolution, blockchain emerged as a platform for developing
applications beyond the straightforward currency transactions. This was first made
technically possible by the development of the Ethereum platform. It provides a tur-
ing complete set of instructions which are executed on a global network of nodes
making it possible to create smart contracts - a piece of code which is run and verified
on all the network nodes [3].It can be used for all kind of applications from legal pro-
cesses to insurance premiums to crowdfunding agreements to financial derivatives.
They can also be used for identity management and digital asset watermarking.

2.3 Decentralization of Storage

Apart from the other applications of blockchain, recent advancements in the field
of decentralized storage network have become visible as well. There are ongoing
efforts in the industry to create a decentralized storage network using the concepts
of blockchain such as storj.io and filecoin.io. One of the major efforts, Filecoin [7], tries
to create blockchain based on a novel concept of ‘Proof of Spacetime’, where blocks
are created by miners that are storing data. This ‘Proof of Spacetime’ replaces the

Chapter 2. Related Work 6

conventional ‘Proof of Work’ used in the blockchain system. It means that the miners
need not spend wasteful computation for mining the new blocks, but they mine the
blocks by storing data in the network. The native tokens of this blockchain is used for
the transaction between clients and providers.

Working on similar line, we are trying to build an incentive layer based on any
existing blockchain system and using their native tokens for the transactions. Also,
we leverage the smart contracts to store the information about storage capacity and
various storage agreements between the clients and the providers.

7

Chapter 3

Methodology

For our approach of creating a decentralized storage network, we divide our pro-
cedure into three major phases. The first phase deals with authorization of a new
provider in the network. The second phase deals with the schemes associated with
the interactions concerning storage agreements and data storage. The last phase de-
scribes the process of verification of remote data possession and payment mechanism.

3.1 Registering New Providers

3.1.1 Procedure

• A new provider requests to enter the system and claims availability of an amount
S (say in bytes) of storage.

• The registration requires provider to give a Proof of Space[10], the availability
of a non-trivial amount of disk space by solving a challenge given by the service
provider. There are two phases : Initialization and Verification.

• In the initialization phase, the provider is given an initialization seed, say I, that
lets him fill in the disk space with some computed data. This step will require
availability of at-least S amount of storage. This data could be in the form a
Merkle Hash-tree (upto a level T depending on size S)

• Once initialization has been completed, in the verification phase, the oracle
starts issuing challenges where the user engages in the proofs using very small
computation, given that he has the precomputed data stored with him.

• On successful solution of these challenges, the verifier issues storage tokens
corresponding to an amount S of storage.

Chapter 3. Methodology 8

3.1.2 Desired Properties

• The challenge should be such that it requires availability of at-least S amount of
simultaneous storage to be efficiently solved.

• The verification should have a low space and time footprint for the verifier.

• The storage requirement, computation complexity and communication com-
plexity of the verifier during both the initialization and verification phases should
be small particularly polylogarithmic or constant in storage requirement S.

3.1.3 Memory-Hard Puzzles

FIGURE 3.1: GGM Hash Tree for Hash values computation

• An example of a memory hard puzzle is GGM Hash tree. Starting with the
random seed I obtained in the initialization phase, a binary tree of depth T is
built by using the following scheme. If a node has label x, the label of its left
child is H(x||0) and label of its right child is H(x||1), where H is a cryptographic
function.

• So, basically each leaf is represented by a pair (i, x) where i ∈ 0, 1T is the index
of the leaf and x is the label on that leaf. These are then sorted based on the x
values.

• In the verification phase, the oracle challenges the provider by picking a random
index i, computing the label x on that node and sending it to client, asking the
client to send back the corresponding index. If the provider had stored all the
2T records, it can quickly find the corresponding (i, x) and solve the challenge
successfully. If it hasn’t, it won’t be able to solve the challenge efficiently.

Chapter 3. Methodology 9

3.2 Data Storage

Whenever a new client comes up on the system with some data to be stored, the list
of prospective storage providers is discovered using the peer to peer node discovery
mechanism. Once the client side gets the list of the possible provider candidates, a
suitable candidate is selected and a storage request is sent to that particular provider.

3.2.1 Node Discovery

Our application allows peers to connect or disconnect from a network at any time. As
a result, our application needs sophisticated discovery mechanisms to enable nodes
to find, identify and communicate with other nodes. In our system, we are employ-
ing the oracle to function as a lightweight automated tracker system [8]. The tracker
provides an initial seed list of peers to the nodes, which then allows any further dis-
covery of peers through discovery mechanisms.

3.2.2 Creation of Storage Agreement

Algorithm 1 Data Storage Scheme

1: Client requests provider for creation of a Storage Agreement.
2: if Provider.StorageTokens > RequestedTokens then
3: LastVeri f icationTime← CurrentTime
4: ExpiryTime← CurrentTime
5: Provider.Tokens← Provider.Tokens− RequestedTokens
6: Client uploads the data on the provider, and issues the initial challenge.
7: if Provider.Solution == CorrectAnswer then
8: LastVeri f icationTime← CurrentTime
9: ExpiryTime← CurrentTime + 24hrs

10: if CurrentTime > ExpiryTime then
11: Provider.Tokens← Provider.Tokens + RequestedTokens
12: Storage Agreement is revoked.

The storage agreement is implemented using smart contracts. So, this whole in-
formation is stored on a distributed ledger and therefore not requiring any central
information repository. This agreement acts as a binding between the client and the
provider and discourages any malicious practice as shown in 3.2.

Chapter 3. Methodology 10

FIGURE 3.2: Flow Chart for the Storage Agreement

3.3 Data Verification and Retrieval

Once a storage agreement is in place between the client and the provider, the client
can verify the presence of data with the provider at regular intervals. Data verifica-
tion helps in ensuring that the provider doesn’t drop the data mid way and enhances
the reliability of the system. Whenever, the data verification process occurs, the stor-
age agreement gets reinforced and the appropriate funds are sent from the client to
the provider.

Data verification is enabled through ’Proof of Storage’ mechanisms where the
client sends a challenge to the provider which can be solved by the provider only
if it has the actual data sent by the client.

The client can retrieve his data whenever required. But, in order to prevent exces-
sive network congestion, a base amount would be levied after a minimum number of
retrievals (say 1) per day.

Chapter 3. Methodology 11

3.3.1 Procedure

Algorithm 2 Data Verification

1: Client creates a PoSt challenge.
2: Provider solves the challenge and sends the solution to the Client.
3: if Success then
4: Client sends desired money to contract.
5: LastVeri f icationTime← CurrentTime
6: ExpiryTime← CurrentTime + 24hrs
7: Contract sends money to the provider.
8: else
9: No updation of agreement occurs.

10: Contract expires when ExpiryTime == CurrentTime

3.3.2 Desired Properties

• The challenge should be such that it can be solved only if the provider has the
data.

• The verification should have a low space and time complexity for the veri-
fier(the client).

• The challenge should be such that for a particular pair of client and provider,
the verification can be done multiple times with minimal information sent each
time over the network.

3.3.3 Proof of Storage Mechanism

Proof of storage challenges are such challenges which allow a client to frequently and
efficiently verify that any system, that was to store the client’s large amount of data
is not cheating it. In the methodology we use for Proo f o f Storage [5], we have two
phases - Setup and Veri f ication phase. In the setup phase, client initially sends some
tokens along with the data. For each veri f ication phase, the challenge is sent. Now,
based on the challenge and the data, the provider sends the answer to the challenge.

Notation

• D - the outsourced data

• OWN - the client who owns the data

• SERV - the provider, i.e. the system that stores the data

Chapter 3. Methodology 12

• f - a pseudo-random function

• g - a pseudo-random permutation

Setup Phase

Assume we have a data D divided into d blocks. We want to be able to create total
t challenges. Two keys W and Z are used to generate session permutation keys and
challenge nonces respectively.

For the Setup phase, OWN creates t random challenges and the corresponding
answers, known as tokens. For the ith challenge, OWN generates a random permu-
tation of r indices as follows:

Algorithm 3 Token Generation

1: Generate permutation key ki = fW(i) and challenge nonce ci = fZ(i)
2: Compute the set of indices { Ij|1 ≤ j ≤ r } where Ij = gki(j)
3: Computer token vi = H (ci , D[I1] , .. , D[Ir])

The token for each of the t challenges, vi represents the solution of the challenge.
The nonce ci is needed to prevent any pre-computation by SRV.

Verification phase

• For the ith verification, OWN regenerates ki and ci and sends it to SRV.

• SRV computes the permutation with the help of ki and then generates vi with
the help of the data as vi = H (ci , D[gki(1)] , .. , D[gki(r)])

• SRV sends it to OWN as the answer to the given challenge.

• OWN verifies it and on success, OWN assumes that SRV still has the data D
with a quite high probability.

13

Chapter 4

Implementation

There are numerous tools and technologies available for developing a decentralized
application. We have identified and employed the most relevant tools for developing
the infrastructure of our application. We have a web application with two interfaces,
one for each provider and client, with options given specifically for each user. A
Provider will have the options for setting the storage rates and selecting disk space.
Whereas, a Client will select the upload data and the maximum cost he will spend re-
curringly. The Oracle is a background service which is responsible for issuing storage
tokens to the providers.

FIGURE 4.1: Use Case Diagram for the Storage Agreement

Chapter 4. Implementation 14

4.1 Tools and Technologies Used

• Solidity : Language used for writing the smart contracts.

• Truffle : Framework based on node which is used for testing and deploying the
smart contracts.

• Ganache (testrpc) : Ethereum Blockchain Simulator

• Flask (python) : Used to create a lightweight oracle service

• Web3 (python) : Python library used to communicate with the Ethereum blockchain

• SQLite : In memory lightweight database. It is used in the oracle server for
persisting data.

4.2 Implementation of Contracts

We have used the Ethereum blockchain as the incentive layer for our application.
The smart contracts deployed on the blockchain will handle all the transactional use
cases of our application. The class diagram for the smart contract is shown in 4.2.
The Contract will be deployed only once by the oracle and its blockchain contract
address as well as contract interface ABI (application binary interface) will be broad-
casted publicly. The users which trust the contract code and the oracle will join the
network using the information broadcasted. Depending on the role of each node, it
will perform one of the several functions as shown in 4.1.

FIGURE 4.2: Class Diagram for the Contract

15

Chapter 5

Analysis

We analyzed and studied the robustness of our architecture with respect to various
scenarios involving malicious clients and providers.

5.1 Malicious Provider Scenarios

These are some scenarios where the provider acts maliciously with intentions to harm
the system. The protocols of our system ensures that it is robust and no client is
harmed due to these malicious intentions.

5.1.1 Provider drops the data

• The provider may abruptly drop a client’s data which was already bounded by
a storage agreement before the ExpiryTime.

• In this case, the system ensures minimal replication by creating copies from the
valid data available with other storage providers.

• Also, since the agreement hasn’t been terminated correctly, the provider doesn’t
get back his storage tokens thus leaving him with lesser storage capacity.

5.1.2 Sybil Attack

• The provider may drop data from his existing contracts and rejoin as by creating
a new identity. This is also known as a Sybil Attack.

• The computationally and time expensive Proof of Space along with the ini-
tial joining deposit prevents provider from unnecessarily rejoining as a new
provider.

Chapter 5. Analysis 16

5.2 Malicious Client Scenarios

These are some scenarios where the client acts maliciously aiming to harm the system.
The protocols of our system ensures that it is robust and no provider is harmed due
to these malicious intentions.

5.2.1 Client evades the system without verifications

• The client may store the data once and does not come back to verify/retrieve
the data thus leading to blockage of providers’ storage capacity.

• In order to overcome this, the agreement has an expiry time and a buffer amount
equivalent to this charge is kept as security in the contract.

• Once the agreement has expired, the agreement is terminated and provider gets
back his storage tokens along with the security amount deposited.

5.2.2 Client repeatedly requests the data

• The client can repeatedly request his data creating congestion in the network.

• In order to prevent this, a daily retrieval limit is set beyond which the client is
charged with a minimal amount for each retrieval.

• This ensures that the provider gets paid for the repeated network transfers
while ensuring the client doesn’t overflow the network.

17

Chapter 6

Conclusion

6.1 Comparison with traditional storage systems

The proposed decentralized storage network can be observed to have some advan-
tages over the conventional storage systems.

• Privacy Concerns : In a decentralized storage network, there is no single party
having all the data. Instead, it is distributed among the various nodes of the
system. So, only the client has the full ownership of its data.

• Decentralized : As the system doesn’t have any central control entity, there is
no single point of failure.

• Peer to peer : As all the data tranfers are peer to peer, if leveraged, it can lead to
marginally fast transfers.

• Incentivized: Anybody having free storage capacity can earn incentives for it.
Moreover, it will bring down the price of storage.

6.2 Future Work

The current architecture can be made much more robust and efficient by incorporat-
ing some changes in the protocols and the architecture.

• Optimal Provider Selection : Algorithms can be devised for finding the optimal
provider for a client based on network latency and other factors.

• Profiling of Providers : Historic profiles of providers can be created based on
their previous records to facilitate the clients in optimal provider selection.

• Publicly verifiable Proof of Storage : Verifier nodes can be introduced in the
system which perform data verification on behalf of the client based on publicily
verifiable PoSt.

Chapter 6. Conclusion 18

• Distribution of Data : We can have a mechanism to distribute the data into
chunks and store it with various providers over the system. This ensures that
only the client have full access to client’s own data.

• Transferable Storage Agreement : Providing option of transferring the storage
agreement to other providers.

In our project, we have explored the possibility of creating a decentralized storage
network with the help of blockchain technology. While creating such a system, we
have identified various challenges mainly preventing frauds arising from the clients
and providers while preserving their anonymous identities. We employed various
decentralized technological tools for solving this problem. If scaled efficiently, the
idea of decentralized storage network can act as a storage mechanism for future.

19

Bibliography

[1] S. M. Bansode Amol S. Choure. “A Comprehensive Survey on Storage Tech-
niques in Cloud Computing”. In: International Journal of Computer Applications
(2015).

[2] Elaine Shi Bryan Parno Andrew Miller Ari Juels and Jonathan Katz. “Perma-
coin: Repurposing Bitcoin Work for Data Preservation”. In: (2014). URL: https:
//ieeexplore.ieee.org/document/6956582/.

[3] Vitalik Buterin. “Ethereum: A Next-Generation Smart Contract and Decentral-
ized Application Platform”. In: (2013). URL: https://github.com/ethereum/
wiki/wiki/White-Paper.

[4] Institute for Development and Research in Banking Technology. “Applications
of Blockchain Technology to Banking and Financial Sector in India”. In: (2017).
URL: http://www.idrbt.ac.in/assets/publications/Best%20Practices/
BCT.pdf.

[5] Luigi V. Mancini Giuseppe Ateniese Roberto Di Pietro and Gene Tsudik. “Scal-
able and Efficient Provable Data Possession”. In: (2008). URL: https://eprint.
iacr.org/2008/114.pdf.

[6] Yonggang Wen Hao Zhang and Haiyong Xie. “A Survey on Distributed Hash
Table : Theory, Platforms, and Applications”. In: (2013). URL: https://pdfs.
semanticscholar.org/8859/3bf30b9de1497ba22b1136ebc433f648bbc8.pdf.

[7] Protocol Labs. “Filecoin: A Decentralized Storage Network”. In: (2013). URL:
https://filecoin.io/filecoin.pdf.

[8] P. Mehra D. Paul M. Kelaskar V. Matossian and M. Parashar. “A Study of Dis-
covery Mechanisms for Peer-to-Peer Applications”. In: (2008). URL: https://
pdfs.semanticscholar.org/2f7b/e383a03bd7584b46d9e6d9cdf39fbe92bc20.

pdf.

[9] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. In: (2008).
URL: https://bitcoin.org/bitcoin.pdf.

[10] Vladimir Kolmogorov Stefan Dziembowski Sebastian Faust and Krzysztof Pietrzak.
“Proofs of Space”. In: (2013). URL: https://eprint.iacr.org/2013/796.pdf.

https://ieeexplore.ieee.org/document/6956582/
https://ieeexplore.ieee.org/document/6956582/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://www.idrbt.ac.in/assets/publications/Best%20Practices/BCT.pdf
http://www.idrbt.ac.in/assets/publications/Best%20Practices/BCT.pdf
https://eprint.iacr.org/2008/114.pdf
https://eprint.iacr.org/2008/114.pdf
https://pdfs.semanticscholar.org/8859/3bf30b9de1497ba22b1136ebc433f648bbc8.pdf
https://pdfs.semanticscholar.org/8859/3bf30b9de1497ba22b1136ebc433f648bbc8.pdf
https://filecoin.io/filecoin.pdf
https://pdfs.semanticscholar.org/2f7b/e383a03bd7584b46d9e6d9cdf39fbe92bc20.pdf
https://pdfs.semanticscholar.org/2f7b/e383a03bd7584b46d9e6d9cdf39fbe92bc20.pdf
https://pdfs.semanticscholar.org/2f7b/e383a03bd7584b46d9e6d9cdf39fbe92bc20.pdf
https://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2013/796.pdf

	Candidate's Declaration
	Certificate
	Acknowledgements
	Abstract
	List of Figures
	Introduction
	Elementary Components
	Architecture Overview
	Desired Properties

	Related Work
	Peer to Peer Systems
	Blockchain Systems
	Decentralization of Storage

	Methodology
	Registering New Providers
	Procedure
	Desired Properties
	Memory-Hard Puzzles

	Data Storage
	Node Discovery
	Creation of Storage Agreement

	Data Verification and Retrieval
	Procedure
	Desired Properties
	Proof of Storage Mechanism
	Notation
	Setup Phase
	Verification phase

	Implementation
	Tools and Technologies Used
	Implementation of Contracts

	Analysis
	Malicious Provider Scenarios
	Provider drops the data
	Sybil Attack

	Malicious Client Scenarios
	Client evades the system without verifications
	Client repeatedly requests the data

	Conclusion
	Comparison with traditional storage systems
	Future Work

	Bibliography

